Amity University, Mumbai B.Tech Admissions 2025
ApplyRanked amongst top 3% universities globally (QS Rankings)
18 Questions around this concept.
In triangle $A B C$ ratio of sides $a: b: c=3: 4: 5$ and it has an incircle which has a center at 0 then find the ratio of the area of $\triangle A O B: \triangle B O C: \triangle C O A$.
${ }_{\text {If }} \mathrm{L}=\frac{\mathrm{ar}_1+\mathrm{br}_2+\mathrm{cr}_3}{\Delta}$, where a, b, c are side of $\triangle A B C$ and $r_1, r_2, r_3$ are the radii of ex-circles and $\Delta$ is area of $\Delta A B C$, then minimum value of L is divisible by
Area of Triangle
The area formula for a triangle is given as
Area $=1 / 2 \mathrm{bh}, \quad$ where ' $b$ ' is the base and ' $h$ ' is the height
Clearly, height h = c.sin(A)
$
\begin{aligned}
\text { Area } & =\frac{1}{2} \text { base } \times \text { height } \\
& =\frac{1}{2} b \cdot \mathrm{c} \sin \mathrm{~A}
\end{aligned}
$
Area of triangle $A B C$ is represented by $\triangle$, Thus
$
\text { Area of } \begin{aligned}
\Delta \mathrm{ABC}=\Delta & =\frac{1}{2} b \cdot \mathrm{c} \sin \mathrm{~A} \\
& =\frac{1}{2} a \cdot \mathrm{~b} \sin \mathrm{C} \\
& =\frac{1}{2} c \cdot \mathrm{a} \sin \mathrm{~B}
\end{aligned}
$
Area of the triangle in terms of sides (Heron's Formula)
$
\Delta=\frac{1}{2} b \cdot \mathrm{c} \sin \mathrm{~A}=\frac{1}{2} b c \cdot 2 \sin \frac{\mathrm{~A}}{2} \cos \frac{\mathrm{~A}}{2}
$
Use half angle formula
$
\begin{aligned}
& =\frac{1}{2} \cdot \mathrm{bc} \cdot \sqrt{\frac{(s-b)(s-c)}{b c}} \sqrt{\frac{s(s-a)}{b c}} \\
& =\sqrt{s(s-a)(s-b)(s-c)}
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"