89 Percentile in JEE Mains 2025 Means How Many Marks? - Check Detailed Analysis

Young's Double Slit Experiment - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Young's double slit experiment -1, Young's double slit experiment- 2 are considered the most difficult concepts.

  • 163 Questions around this concept.

Solve by difficulty

a YDSE: D = 1 m, d = 1 mm and l = 5000 n m. The distance of the 100th maxima from the central maxima is:

The shape of fringes when two pin holes are used in place of the two slits in YDSE is:

Interference was observed in the interference chamber when air is present. Now the chamber is evacuated and if the same light is used, then for the same arrangement:

In YDSE experiment, separation between slits is 2 mm and separation from the screen is 1 m. What will be the minimum distance of a point on screen from central point of screen, which has phase difference of $\frac{2 \pi}{3}$?

In YDSE, both slits are illuminated by dichromatic light of two wavelengths. The slits are 0.1 cm apart, and the screen is placed 1 m away. In this case, we will observe a complete dark point on the screen and find the minimum distance of such a point from a central point.

Case1:Two wavelengths are $6000 A^0$ and $8000 A^0$
Case2:Two wavelengths are $3000 A^0$ and $5000 A^0$

In YDSE, determine the width of central maxima(in cm) formed on the screen if d = 3mm, D = 1m, \lambda = 1.5mm.

In Young’s double slit experiment, 12 fringes are observed to be formed in a certain segment of the screen, when light of wavelength 800 nm is used. If the wavelength of light is changed to 400 nm, a number of fringes observed in the same segment of the screen is given by:

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements | Last Date to Apply: 25th Feb

In Young’s double-slit experiment, the separation between the slits is halved and the distance between the slits and the screen is doubled. The fringe width is

Two slits are separated by a distance of 0.5 mm and illuminated with light of $\lambda=2000 A$. If the screen is placed 2.5 m from the slits. The distance of the third bright image from the centre will be:

JEE Main 2025 College Predictor
Know your college admission chances in NITs, IIITs and CFTIs, many States/ Institutes based on your JEE Main result by using JEE Main 2025 College Predictor.
Try Now

In a double slit experiment instead of taking slits of equal widths, one slit is made twice as wide as the other, then in the interference pattern.

Concepts Covered - 2

Young's double slit experiment -1

Young's double-slit experiment -1-

This experiment is performed by British physicist Thomas Young. He used an arrangement as shown below. In this he used a monochromatic source of light S . He made two pinholes S1 and S2 (very close to each other) on an opaque screen as shown in the figure Each source can be considered as a source of the coherent light source. 

                                                                                     

                                              

So, we can see that the monochromatic light source ‘s’ kept at a considerable distance from two slits s1 and s2. The arrangement is such that the S is equidistant from S1 and S2. S1 and S2 behave as two coherent sources, as both bring derived from S. 

Let d be the distance between two coherent sources A and B having wavelength λ. A screen XY is placed parallel to an opaque screen at a distance D. O is a point on the screen equidistant from A and B. P is a point at a distance x from O

                                                     

                                   


From the above figure, we can see that the waves from A and B meet at P. It may be in phase or out of phase depending upon the path difference between the two waves, which we will calculate.

                                     

Draw AM perpendicular to BP
The path difference $\delta=\mathrm{BP}-\mathrm{AP}$
As we can see that, $\mathrm{AP}=\mathrm{MP}$

$
\delta=\mathrm{BP}-\mathrm{AP}=\mathrm{BP}-\mathrm{MP}=\mathrm{BM}
$


In right angled $\mathrm{ABM}, \quad \mathrm{BM}=\mathrm{d} \sin \theta$ lf $\theta$ is small,

$
\sin \theta=\theta
$


The path difference $\delta=\theta . d$
In right angled triangle $\mathrm{COP}, \quad \tan \theta=\mathrm{OP} / \mathrm{CO}=\mathrm{X} / \mathrm{D}$
For small values of $\theta, \tan \theta=\theta$
Thus, the path difference $\delta=\mathrm{xd} / \mathrm{D}$
So, the path differnece is $=\frac{x d}{D}$

For Bright Fringes - 

By the principle of interference, the condition for constructive interference is the path difference = nλ

$
\frac{x d}{D}=n \lambda
$


Here, $n=0,1,2 \ldots \ldots$ indicate the order of bright fringes
So, $x=\left(\frac{n \lambda D}{d}\right)$
This equation gives the distance of the $n^{\text {th }}$ bright fringe from the point O .

For Dark fringes :

By the principle of interference, the condition for destructive interference is the path difference $=$

$
\frac{(2 n-1) \lambda}{2}
$


Here, $n=1,2,3 \ldots$ indicate the order of the dark fringes.
So,

$
x=\frac{(2 n-1) \lambda D}{2 d}
$


The above equation gives the distance of the $\mathrm{n}^{\text {th }}$ dark fringe from the point O .
So, we can say that the alternate dark and bright fringe will be obtained on either side of the central bright fringe.

 

Band Width (β) -

The distance between any two consecutive bright or dark bands is called bandwidth. 

Take the consecutive dark or bright fringe - 

                                 

$
\begin{aligned}
x_{n+1}-x_n & =\frac{(n+1) \lambda D}{d}-\frac{(n) \lambda D}{d} \\
x_{n+1}-x_n & =\frac{\lambda D}{d} \\
\beta & =\frac{\lambda D}{d}
\end{aligned}
$


Angular fringe width -

$
\theta=\frac{\beta}{D}=\frac{\lambda D / d}{D}=\frac{\lambda}{d}
$
 

 

 

Young's double slit experiment- 2

Young's double slit experiment- 2 -

Intensity of Fringes In Young’s Double Slit Experiment-

 

For two coherent sources S1 and S2, the resultant intensity at point P on the screen is given by-

                                     

$
I=I_1+I_2+2 \sqrt{I_1 I_2} \cos \phi
$

where
$I_1=$ The intensity of wave from $\mathrm{S}_1$
$I_2=$ The intensity of wave $\mathrm{S}_2$
Putting $I_1$ and $I_2=I_o \quad$ (Becasue $\mathrm{d} \ll<\mathrm{D}$ )

$
\Rightarrow I=I_0+I_0+2 \sqrt{I_0 I_0} \cos \phi=4 I_0 \cos ^2 \frac{\phi}{2}
$


So the intensity variation from maximum to minimum depends on the phase difference. Let us discuss one by one -

For maximum intensity
The phase difference between the waves at the point of observation is $\phi=0^{\circ}$ or $2 n \pi$. Path difference between the waves at the point of observation is $\Delta x=n \lambda($ i.e. even multiple of $\lambda / 2$ )

Resultant intensity at the point of observation will be maximum

$
\text { i.e } \begin{aligned}
I_{\max } & =I_1+I_2+2 \sqrt{I_1 I_2} \\
I_{\max } & =\left(\sqrt{I_1}+\sqrt{I_2}\right)^2 \\
\text { If } \quad I_1 & =I_2=I_0 \Rightarrow I_{\max }=4 I_0
\end{aligned}
$


For Minimum Intensity -
The phase difference between the waves at the point of observation is

$
\begin{aligned}
& \phi=180^{\circ} \text { or }(2 n-1) \pi ; n=1,2, \ldots \\
& \text { or }(2 n+1) \pi ; n=0,1,2 \ldots
\end{aligned}
$
 

Path difference between the waves at the point of observation is

$
\Delta x=(2 n-1) \frac{\lambda}{2}(\text { i.e. odd multiple of } \lambda / 2)
$


Resultant intensity at the point of observation will be maximum

$
\begin{gathered}
I_{\min }=I_1+I_2-2 \sqrt{I_1 I_2} \\
\quad I_{\min }=\left(\sqrt{I_1}-\sqrt{I_2}\right)^2 \\
\text { If } I_1=I_2=I_0 \Rightarrow I_{\min }=0
\end{gathered}
$
 

 

 

                                    

                                   

Maximum Order of Interference Fringes -

 

As we know that the position of nth order maxima on the screen is - 

                                             

$
\frac{n \lambda D}{d} ; n=0, \pm 1, \pm 2, \ldots
$


Value of ' $n$ ' cannot be taken as infinitely large, because it violates the assumption of the Young's double slit experiment (Mentioned in the last concept) which means that the $\theta$ is small or we can write $\mathrm{x}<\mathrm{D}$. So,

$
\Rightarrow \frac{x}{D}=\frac{n \lambda}{d}<<1
$


So the above formula is only applicable for -

$
n \ll<\frac{d}{\lambda}
$


But when, $n \approx \frac{d}{\lambda}$, which means that the n is comparable with $\frac{d}{\lambda}$. Then the above formula is not applicable, then we have to go with the basic and we will equate path difference as -

$
\begin{aligned}
& \Rightarrow d \sin \theta=n \lambda \\
& \Rightarrow n=\frac{d \sin \theta}{\lambda} \\
& \text { So, } \\
& n_{\max }=\left[\frac{d}{\lambda}\right]
\end{aligned}
$


The above represents box function or greatest integer function.
Similarly, the highest order of interference minima

$
n_{\min }=\left[\frac{d}{\lambda}+\frac{1}{2}\right]
$
 

 

 

  

 

 

 

Study it with Videos

Young's double slit experiment -1
Young's double slit experiment- 2

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top