JEE Main Answer Key 2025 (Released) - Download Jan 22, 23 Unofficial Answer Key PDF

Tangents to Hyperbolas - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Equation of Tangent of Hyperbola in Point Form, Equation of Tangent of Hyperbola in Parametric Form and Slope Form is considered one of the most asked concept.

  • 74 Questions around this concept.

Solve by difficulty

Let P be the point of intersection of the common tangents to the parabola $y^2=12 x$ and the hyperbola $8 x^2-y^2=8$. If S and $\mathrm{S}^{\prime}$ denote the foci of the hyperbola where S lies on the positive x-axis then P divides SS in a ratio :

The tangent at a point P on the hyperbola\mathrm{\frac{x^2}{a^2}-\frac{y^2}{b^2}=1} meets one of the directrices in F. If PF subtends
an angle \mathrm{\theta } at the corresponding focus, then \mathrm{\theta } equals

If PQ is a double ordinate of hyperbola $\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ such that CPQ is an equilateral triangle, C being the centre of the hyperbola. Then the eccentricity e of the hyperbola satisfies

Tangents are drawn to \mathrm{3 x^2-2 y^2=6} from a point P. If these tangents intersect the coordinate axes at concyclic points, The locus of P is

 

Concepts Covered - 2

Equation of Tangent of Hyperbola in Point Form

Equation of Tangent of Hyperbola in Point Form:

The equation of tangent to the hyperbola, $\frac{x^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ at point $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\frac{\mathrm{xx}_1}{\mathrm{a}^2}-\frac{\mathrm{yy}_1}{\mathrm{~b}^2}=1$

Differentiating $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ w.r.t. $x$, we have

$
\begin{array}{ll} 
& \frac{2 x}{a^2}-\frac{2 y}{b^2} \frac{d y}{d x}=0 \\
\Rightarrow & \frac{d y}{d x}=\frac{b^2 x}{a^2 y} \\
\Rightarrow \quad & \left(\frac{d y}{d x}\right)_{(x, y)}=\frac{b^2 x_1}{a^2 y_1}
\end{array}
$
Hence, equation of the tangent is $y-y_1=\frac{b^2 x_1}{a^2 y_1}\left(x-x_1\right)$
or

$
\frac{\mathrm{xx}_1}{\mathrm{a}^2}-\frac{\mathrm{yy}_1}{\mathrm{~b}^2}=\frac{\mathrm{x}_1^2}{\mathrm{a}^2}-\frac{\mathrm{y}_1^2}{\mathrm{~b}^2}
$
But $\left(x_1, y_1\right)$ lies on the hyperbola $\Rightarrow \frac{x_1^2}{a^2}-\frac{y_1^2}{b^2}=1$
Hence, equation of the tangent is

$
\begin{gathered}
\frac{x x_1}{a^2}-\frac{y y_1}{b^2}=1 \\
\text { or } \quad \frac{x x_1}{a^2}-\frac{y y_1}{b^2}-1=0 \text { or } T=0
\end{gathered}
$

where $\quad T=\frac{x x_1}{a^2}-\frac{y y_1}{b^2}-1$

 

 

Equation of Tangent of Hyperbola in Parametric Form and Slope Form

Equation of Tangent of Hyperbola in Parametric Form and Slope Form

Parametric Form

The equation of tangent to the hyperbola, $\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1 \mathrm{at}(\mathrm{a} \sec \theta, \mathrm{b} \tan \theta)$ is $\frac{\mathrm{x}}{\mathrm{a}} \sec \theta-\frac{\mathrm{y}}{\mathrm{b}} \tan \theta=1$
(This can easily be derived by putting $\mathrm{x}_1=\mathrm{a} \sec \theta$ and $\mathrm{y}_1=\mathrm{b} \tan \theta$ in the point form of tangent)

Slope Form
rbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, then $c^2=a^2 m^2-b^2$. So the equation of tangent is $y=m x \pm \sqrt{a^2 m^2-b^2}$.
These equations are equations of two parallel tangents to hyperbola having slope $m$.

 

Study it with Videos

Equation of Tangent of Hyperbola in Point Form
Equation of Tangent of Hyperbola in Parametric Form and Slope Form

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top