Equation of Tangent of Hyperbola in Point Form, Equation of Tangent of Hyperbola in Parametric Form and Slope Form is considered one of the most asked concept.
82 Questions around this concept.
Let P be the point of intersection of the common tangents to the parabola $y^2=12 x$ and the hyperbola $8 x^2-y^2=8$. If S and $\mathrm{S}^{\prime}$ denote the foci of the hyperbola where S lies on the positive x-axis then P divides SS in a ratio :
The tangent at a point P on the hyperbola meets one of the directrices in F. If PF subtends
an angle at the corresponding focus, then
equals
If PQ is a double ordinate of hyperbola $\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ such that CPQ is an equilateral triangle, C being the centre of the hyperbola. Then the eccentricity e of the hyperbola satisfies
New: JEE Main 2026 Registration Link | Top 30 Most Repeated Questions
JEE Main Prep: Study Plan | Preparation Tips | High Scoring Chapters and Topics
JEE Main QP & Mock: Previous 10 Year Questions | Chapter Wise PYQs | Mock test Series
JEE Main Most Scoring Concept: January 2025 Session | April 2025 Session
The locus of the midpoints of the chord of the circle, $x^2+y^2=25$ which is tangent to the hyperbola, $\frac{x^2}{9}-\frac{y^2}{16}=1$ is :
Tangents are drawn to from a point P. If these tangents intersect the coordinate axes at concyclic points, The locus of P is
Equation of Tangent of Hyperbola in Point Form:
The equation of tangent to the hyperbola, $\frac{x^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ at point $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\frac{\mathrm{xx}_1}{\mathrm{a}^2}-\frac{\mathrm{yy}_1}{\mathrm{~b}^2}=1$

Differentiating $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ w.r.t. $x$, we have
$
\begin{array}{ll}
& \frac{2 x}{a^2}-\frac{2 y}{b^2} \frac{d y}{d x}=0 \\
\Rightarrow & \frac{d y}{d x}=\frac{b^2 x}{a^2 y} \\
\Rightarrow \quad & \left(\frac{d y}{d x}\right)_{(x, y)}=\frac{b^2 x_1}{a^2 y_1}
\end{array}
$
Hence, equation of the tangent is $y-y_1=\frac{b^2 x_1}{a^2 y_1}\left(x-x_1\right)$
or
$
\frac{\mathrm{xx}_1}{\mathrm{a}^2}-\frac{\mathrm{yy}_1}{\mathrm{~b}^2}=\frac{\mathrm{x}_1^2}{\mathrm{a}^2}-\frac{\mathrm{y}_1^2}{\mathrm{~b}^2}
$
But $\left(x_1, y_1\right)$ lies on the hyperbola $\Rightarrow \frac{x_1^2}{a^2}-\frac{y_1^2}{b^2}=1$
Hence, equation of the tangent is
$
\begin{gathered}
\frac{x x_1}{a^2}-\frac{y y_1}{b^2}=1 \\
\text { or } \quad \frac{x x_1}{a^2}-\frac{y y_1}{b^2}-1=0 \text { or } T=0
\end{gathered}
$
where $\quad T=\frac{x x_1}{a^2}-\frac{y y_1}{b^2}-1$
Equation of Tangent of Hyperbola in Parametric Form and Slope Form
Parametric Form
The equation of tangent to the hyperbola, $\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1 \mathrm{at}(\mathrm{a} \sec \theta, \mathrm{b} \tan \theta)$ is $\frac{\mathrm{x}}{\mathrm{a}} \sec \theta-\frac{\mathrm{y}}{\mathrm{b}} \tan \theta=1$
(This can easily be derived by putting $\mathrm{x}_1=\mathrm{a} \sec \theta$ and $\mathrm{y}_1=\mathrm{b} \tan \theta$ in the point form of tangent)
Slope Form
rbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, then $c^2=a^2 m^2-b^2$. So the equation of tangent is $y=m x \pm \sqrt{a^2 m^2-b^2}$.
These equations are equations of two parallel tangents to hyperbola having slope $m$.

"Stay in the loop. Receive exam news, study resources, and expert advice!"
