JEE Main Mock Test 2026 with Solutions - Link, Online Free JEE Mains Test Series

Distance Between Two Points Formula - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Distance between two points is considered one the most difficult concept.

  • 30 Questions around this concept.

Solve by difficulty

The locus of the centres of the circles, which touch the circle,

$x^{2}+y^{2}=1$ externally , also touch the y-axis and lie in the

first quadrant, is :

The intersection of three lines $x-y=0,x+2y=3 \; \text {and} \; 2x+y=6$ is a :

A triangle with vertices $(4, 0), (–1, –1), (3, 5)$ is

If in a cartesian coordinate system Point A = (3,5) and point B = (5,7) find the distance between A and B ? 

What is the distance b/w points A(3,-6 ) and B (2,1) along y-axis ? 

What is the distance b/w points  P(2,7) and Q (7,8) along x-axis 

If the distance between the points $(a, 0,1)$ and $(0,1,2)$ is $\sqrt{27}$, then the value of a is

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

NIELIT University(Govt. of India Institution) Admissions

Campuses in Ropar, Agartala, Aizawl, Ajmer, Aurangabad, Calicut, Imphal, Itanagar, Kohima, Gorakhpur, Patna & Srinagar

If $P(\sqrt{2} \sec \theta, \sqrt{2} \tan \theta)$ is a point on the hyperbola whose distance from the origin is $\sqrt{6}$ (where P is in the first quadrant) then $\theta$ equals

The ratio in which the line 3x + 4y + 2 = 0 divides the distance between the lines 3x + 4y + 5 = 0 and 3x + 4y – 5 = 0 is

 

JEE Main 2026: Preparation Tips & Study Plan
Download the JEE Main 2026 Preparation Tips PDF to boost your exam strategy. Get expert insights on managing study material, focusing on key topics and high-weightage chapters.
Download EBook

The value of 'a' if the distance between P(a, 5) and Q(2, a) is 7 units, is

Concepts Covered - 1

Distance between two points

Distance between two points

Given, Point A (x1, y1) and B (x2, y2) are two points on the cartesian plane

 

Using Pythagoras Theorem

$
\begin{aligned}
& c^2=a^2+b^2 \\
& A B^2=a^2+b^2 \\
& A B^2=\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2 \\
& |A B|=\sqrt{\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2}
\end{aligned}
$
Note:

The distance of a point $\mathrm{A}(\mathrm{x}, \mathrm{y})$ from the origin $\mathrm{O}(0,0)$ is given by

$
|O A|=\sqrt{(x-0)^2+(y-0)^2}=\sqrt{x^2+y^2}
$
 

Study it with Videos

Distance between two points

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions