UPES B.Tech Admissions 2025
ApplyRanked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Circumcentre and Orthocentre is considered one of the most asked concept.
45 Questions around this concept.
The radical centre of three circles described on the three sides of a triangle as diameter is the
Let the position vectors of the vertices $\mathrm{A}, \mathrm{B}$ and $\mathrm{C}$ of a triangle be $2 \hat{\imath}+2 \hat{\jmath}+\hat{k}, \hat{\imath}+2 \hat{\jmath}+2 \hat{k}$ and $2 \hat{\imath}+\hat{\jmath}+2 \hat{k}$ respectively. Let $\ell_1, \ell_2$ and $\ell_3$ be the lengths of perpendiculars drawn from the ortho center of the triangle on the sides $\mathrm{AB}, \mathrm{BC}$ and $\mathrm{CA}$ respectively, then $\ell_1^2+\ell_2^2+\ell_3^2$ equals:
Circumcentre
Perpendicular bisector of a side of a triabgle is the line through the midpoint of a side and perpendicular to it.
The Circumcentre (O) of a triangle is the point of intersection of the perpendicular bisectors of the sides of a triangle.
Circumcentre is also defined as the center of a circle that passes through the vertices of a given triangle.
Coordinates of Circumcentre $(0)$ is
$
\left(\frac{\mathrm{x}_1 \sin 2 \mathrm{~A}+\mathrm{x}_2 \sin 2 \mathrm{~B}+\mathrm{x}_3 \sin 2 \mathrm{C}}{\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}}, \frac{\mathrm{y}_1 \sin 2 \mathrm{~A}+\mathrm{y}_2 \sin 2 \mathrm{~B}+\mathrm{y}_3 \sin 2 \mathrm{C}}{\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}}\right)
$
Orthocentre:
The Orthocentre (H) of a triangle is the point of intersection of altitudes which are drawn from one vertex to the opposite side of a triangle.
Coordinates of Orthocentre (H) is
$
\left(\frac{\mathbf{x}_{\mathbf{1}} \tan \mathbf{A}+\mathbf{x}_2 \tan \mathbf{B}+\mathbf{x}_{\mathbf{3}} \tan \mathbf{C}}{\tan \mathbf{A}+\tan \mathbf{B}+\tan \mathbf{C}}, \frac{\mathbf{y}_{\mathbf{1}} \tan \mathbf{A}+\mathbf{y}_{\mathbf{2}} \tan \mathbf{B}+\mathbf{y}_{\mathbf{3}} \tan \mathbf{C}}{\tan \mathbf{A}+\tan \mathbf{B}+\tan \mathbf{C}}\right)
$
Note:
For a right angled triangle, the orthocenter is the vertex containing the right angle
"Stay in the loop. Receive exam news, study resources, and expert advice!"