JEE Main 2025 Cutoff for CSE - Qualifying Marks for NIT, IIIT, GFTI

Circumcentre and Orthocentre - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Circumcentre and Orthocentre is considered one of the most asked concept.

  • 45 Questions around this concept.

Solve by difficulty

Two vertices of a triangle are (0,2) and (4,3). If its orthocentre is at the origin, then its third vertex lies in which quadrant?

The radical centre of three circles described on the three sides of a triangle as diameter is the 

 

 

Consider the triangle OAB where $\mathrm{O}=(0,0), \mathrm{B}=(3,4)$. If the orthocentre of a triangle is $\mathrm{H}(1,4)$ then coordinate of A is

 

If ABC is a triangle with vertices $(2,2) ;(\sqrt{5}, \sqrt{3})$ and $(\sqrt{2}, \sqrt{6})$ then radius of circum circle is

If all the altitudes of a triangle passes through a unique point , then this point is called 

Concepts Covered - 1

Circumcentre and Orthocentre

Circumcentre

Perpendicular bisector of a side of a triabgle is the line through the midpoint of a side and perpendicular to it.  

The Circumcentre (O) of a triangle is the point of intersection of the perpendicular bisectors of the sides of a triangle.

Circumcentre is also defined as the center of a circle that passes through the vertices of a given triangle.

Coordinates of Circumcentre $(0)$ is

$
\left(\frac{\mathrm{x}_1 \sin 2 \mathrm{~A}+\mathrm{x}_2 \sin 2 \mathrm{~B}+\mathrm{x}_3 \sin 2 \mathrm{C}}{\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}}, \frac{\mathrm{y}_1 \sin 2 \mathrm{~A}+\mathrm{y}_2 \sin 2 \mathrm{~B}+\mathrm{y}_3 \sin 2 \mathrm{C}}{\sin 2 \mathrm{~A}+\sin 2 \mathrm{~B}+\sin 2 \mathrm{C}}\right)
$

Orthocentre:

The Orthocentre (H) of a triangle is the point of intersection of altitudes which are drawn from one vertex to the opposite side of a triangle. 

Coordinates of Orthocentre (H) is

$
\left(\frac{\mathbf{x}_{\mathbf{1}} \tan \mathbf{A}+\mathbf{x}_2 \tan \mathbf{B}+\mathbf{x}_{\mathbf{3}} \tan \mathbf{C}}{\tan \mathbf{A}+\tan \mathbf{B}+\tan \mathbf{C}}, \frac{\mathbf{y}_{\mathbf{1}} \tan \mathbf{A}+\mathbf{y}_{\mathbf{2}} \tan \mathbf{B}+\mathbf{y}_{\mathbf{3}} \tan \mathbf{C}}{\tan \mathbf{A}+\tan \mathbf{B}+\tan \mathbf{C}}\right)
$
Note:
For a right angled triangle, the orthocenter is the vertex containing the right angle

Study it with Videos

Circumcentre and Orthocentre

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Circumcentre and Orthocentre

Mathematics for Joint Entrance Examination JEE (Advanced) : Coordinate Geometry

Page No. : 1.11

Line : 31

E-books & Sample Papers

Get Answer to all your questions

Back to top