Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
Section Formula is considered one the most difficult concept.
40 Questions around this concept.
Let $O$ be the vertex and $Q$ be any point on the parabola, $x^2=8 y$. If the point $P$ divides the line segment $O Q$ internally in the ratio $1: 3$, then the locus of $P$ is :
If the line 2x + y = k passes through the point which divides the line segment joining the points (1, 1) and (2, 4) in the ratio 3 : 2, then k equals:
The point diametrically opposite to the point $P(1,0)$ on the circle $x^2+y^2+2 x+4 y-3=0$ is
Latest: Free All-India JEE Main 2026 Mock Test - Attempt Now
JEE Main Sample Papers: Physics | Chemistry | Maths | Top 30 Repeated Questions
JEE Main QP & Mock: Previous 10 Year Questions | Chapter Wise PYQs | Mock test Series
JEE Main: Last Five Year Analysis (2021-2025)
Using section formula find the foot of perpendicular drawn from the point (2,3) to the line joining the points (2,0) and $\left(\frac{8}{13}, \frac{12}{13}\right)$
Let $\alpha, \beta, \gamma, \delta \in \mathbb{Z}$ and let $\mathrm{A}(\alpha, \beta), \mathrm{B}(1,0), \mathrm{C}(\gamma, \delta)$ and $\mathrm{D}(1,2)$ be the vertices of a parallelogram $\mathrm{ABCD}$. If $\mathrm{AB}=\sqrt{10}$ and the points $\mathrm{A}$ and $\mathrm{C}$ lie on the line $3 \mathrm{y}=2 \mathrm{x}+1$, then $2(\alpha+\beta+\gamma+\delta)$ is equal to
$
\text { Find the mid point of line segment } A B \text { where } A=(3,5) \text { and } B=(2,7)
$
If M (1,2) is the midpoint of the line joining A (3,-7 ) and B(x,y ) then find the value of $|x_1 - y_1 |$
If (a, 0), (3, a), (7,4), (9, -1), in order are 4 vertices of a parallelogram, then the value of a is
Section Formula
1.Internal division

The coordinates of the point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ dividing the line segment joining the two points $\mathrm{A}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ and $\mathrm{B}\left(\mathrm{x}_2, \mathrm{y}_2\right)$ internally in the ratio m : n is given by
$
\mathbf{x}=\frac{\mathbf{m x}_{\mathbf{2}}+\mathbf{n x}_{\mathbf{1}}}{\mathbf{m}+\mathbf{n}}, \quad \mathbf{y}=\frac{\mathbf{m} \mathbf{y}_{\mathbf{2}}+\mathbf{n} \mathbf{y}_{\mathbf{1}}}{\mathbf{m}+\mathbf{n}}
$
Note:
If $P$ is the mid point of the line segment $A B$, then ratio become equals, i.e. $m=n$, in this case, coordinates of point $P$ is
$
\mathrm{x}=\frac{\mathrm{x}_1+\mathrm{x}_2}{2}, \quad \mathrm{y}=\frac{\mathrm{y}_1+\mathrm{y}_2}{2}
$
2. External Division
The coordinates of the point $P(x, y)$ dividing the line segment joining the two points $A\left(x_1, y_1\right)$ and $B\left(x_2, y_2\right)$ externally in the ratio $m: n$ is given by
$
\mathbf{x}=\frac{\mathbf{m x}_{\mathbf{2}}-\mathbf{n x}_1}{\mathbf{m}-\mathbf{n}}, \quad \mathbf{y}=\frac{\mathbf{m y}_{\mathbf{2}}-\mathbf{n y}_1}{\mathbf{m}-\mathbf{n}}
$
NOTE:
1. If the ratio in which a given line segment is divided, is to be determined, then sometimes, for convenience (instead of taking the ratio $\mathrm{m}: \mathrm{n}$ ) we take the ratio $\lambda: 1$ and apply the formula for internal division $\left(\frac{\lambda x_2+x_1}{\lambda+1}, \frac{\lambda y_2+y_1}{\lambda+1}\right)$
2. If the value of $\lambda>0$, it is an internal division, otherwise it is an external division (i.e. when $\lambda<0$ )
"Stay in the loop. Receive exam news, study resources, and expert advice!"
