JEE Main Cutoff for IIIT Srirangam 2024 - Check Here

Tangent to a Parabola - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Tangents of Parabola in Point Form, Tangents of Parabola in Slope Form is considered one of the most asked concept.

  • 101 Questions around this concept.

Solve by difficulty

If the line \mathrm{x+y-1=0} touches the parabola \mathrm{y^{2}=k x}, then the value of \mathrm{k} is.

The slope of the line touching both the parabolas y2= 4x and x2 = -32y is:

Tangents are drawn to the parabola \mathrm{Y}^{2}=4 \mathrm{ax} at the point \mathrm{A} and \mathrm{B}  intersect at \mathrm{C}. If '\mathrm{S}' be the focus of the parabola then, SA, SC and SB forms

Concepts Covered - 4

Tangents of Parabola in Point Form

Tangents of Parabola in  Point Form

Equation of the tangent to the parabola $y^2=4 a x$ at the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)$

The given equation is

$
y^2=4 a x
$
Differentiating with respect to $x$, we get

$
\begin{aligned}
& 2 \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=4 \mathrm{a} \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2 \mathrm{a}}{\mathrm{y}} \\
& \text { Now } m=\left(\frac{d y}{d x}\right)_{\left(x_1, y_1\right)}=\frac{2 a}{y_1}
\end{aligned}
$
Equation of tangent at point $\left(x_1, y_1\right)$

$
\begin{aligned}
& \Rightarrow \quad\left(\mathrm{y}-\mathrm{y}_1\right)=\frac{2 \mathrm{a}}{\mathrm{y}_1}\left(\mathrm{x}-\mathrm{x}_1\right) \\
& \Rightarrow \quad \mathrm{yy}_1-\mathrm{y}_1^2=2 \mathrm{ax}-2 \mathrm{ax}_1 \\
& \Rightarrow \quad \mathrm{yy}_1=2 \mathrm{ax}-2 \mathrm{ax}_1+4 \mathrm{ax}_1 \\
& \Rightarrow \quad \mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)
\end{aligned}
$
 

\begin{array}{c||c c} \\ \mathbf { Equation \;of \;Parabola } & {\mathbf { A \;tangent\; at\; } P\left(x_{1}, y_{1}\right)} \\ \\ \hline \hline\\y^{2}=4ax & {y y_{1}=2 a\left(x+x_{1}\right)} & {} \\\\ {y^{2}=-4 a x} & {y y_{1}=-2 a\left(x+x_{1}\right)} & {} \\\\ {x^{2}=4 a y} & {x x_{1}=2 a\left(y+y_{1}\right)} & {} \\\\ {x^{2}=-4 a y} & {x x_{1}=-2 a\left(y+y_{1}\right)} & {} \\ \end{array}

Note:

The same procedure can be applied to any general equation of parabola as well
For example, the tangent to $4 y=x^2+2 x-9$ at $\left(x_1, y_1\right)$ is $2\left(y+y_1\right)=x x_1+\left(x+x_1\right)-9$

Tangents of Parabola in Parametric Form

Tangents of Parabola in Parametric Form

The equation of tangent to the parabola $y^2=4 a x$ at the point $\left(\mathrm{at}^2, 2 \mathrm{at}\right)$ is $\mathrm{ty}=\mathrm{x}+\mathrm{at}^2$

Proof:
Equation of the tangent to the parabola $y^2=4 a x$ at the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)$
replace $\mathrm{x}_1 \rightarrow \mathrm{at}^2, \mathrm{y}_1 \rightarrow 2$ at

$
y(2 a t)=2 a\left(x+a t^2\right) \Rightarrow y t=x+a t^2
$

\begin{array}{c||c cl} \\\mathbf { {Equation \;of \;Parabola} } & {\mathbf { Coordinate }} & {\mathbf { Tangent\; Equation }}\\ \\ \hline\hline\\ {\color{Teal} y^{2}=4ax} & {\color{Teal} {\left(at^{2}, 2 a t\right)}} & {\color{Teal} {t y=x+a t^{2}}} \\ \\ {\color{Red} x^{2} {=4 a y}} & {\color{Red} {(2 a t, a t^2)}} & {\color{Red} {t x=y+a t^{2}}} \\ \\ {\color{Teal} y^{2}{=-4 a x}} & {\color{Teal} {\left(-a t^{2}, 2 a t\right)} }& {\color{Teal} {t y=-x+a t^{2}}} \\ \\ {\color{Red} x^{2} {=} {-4 a y}} & {\color{Red} {\left(2 a t,-at^{2}\right)}} & {\color{Red} {t x=-y+a t^{2}} }\\ \end{array}

Tangents of Parabola in Slope Form

Tangents of Parabola in Slope Form

Equation of the tangent to the parabola $y^2=4 a x$ at the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is

$
\mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)
$
If $m$ is the slope of the tangent, then

$
\mathrm{m}=\frac{2 \mathrm{a}}{\mathrm{y}_1} \Rightarrow \mathrm{y}_1=\frac{2 \mathrm{a}}{\mathrm{~m}}
$

$\left(\mathrm{x}_1, \mathrm{y}_1\right)$ lies on the parabola $\mathrm{y}^2=4 \mathrm{ax}$

$
\begin{aligned}
\mathrm{y}_1^2 & =4 \mathrm{ax}_1 \Rightarrow \frac{4 \mathrm{a}^2}{\mathrm{~m}^2}=4 \mathrm{ax}_1 \\
\therefore \quad \mathrm{x}_1 & =\frac{\mathrm{a}}{\mathrm{~m}^2}
\end{aligned}
$

put the value of $\mathrm{x}_1$ and $\mathrm{y}_1$ in the equation $\mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)$ we get

$
\Rightarrow \quad y=m x+\frac{a}{m}
$

Which is the equation of the tangent of the parabola in slope form.
The coordinates of point of contact are $\left(\frac{a}{m^2}, \frac{2 a}{m}\right)$

Slope form of tangent for other forms of parabola

\begin{array}{c||cc} \mathbf { Equation \;of \;Parabola } & {\mathbf { Point \;of \;Contact }} & {\mathbf { Tangent\; Equation }} \\\\ \hline\hline \\ {\color{Black} y^{2}{=4 a x}} & {\color{Black} {\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right)}} & {\color{Black} {y=m x+\frac{a}{m}}}\\ \\ {\color{Black} y^{2}{=-4 a x}} & {\color{Black} {\left(-\frac{a}{m^{2}}, \frac{2 a}{m}\right)}} & {\color{Black} {y=m x-\frac{a}{m}}} \\\\ {\color{Black} x^{2}{=4 a y}} & {\color{Black} {\left(2am, am^2\right)}} & {\color{Black} {y=m x-am^2}} \\\\ {\color{Black} x^{2}{=-4 a y}} & {\color{Black} {\left(2am, -am^2\right)}} & {\color{Black} {y=m x+am^2}} \end{array}
 

 

 

Point of Intersection of Tangent

Point of Intersection of Tangent

Two points, $P \equiv\left(a t_1^2, 2 a t_1\right)$ and $Q \equiv\left(a t_2^2, 2 a t\right)$ on the parabola $y^2=4 a x$.
Then, equation of tangents at $P$ and $Q$ are

$
\begin{aligned}
& t_1 y=x+a t_1^2 \\
& t_2 y=x+a t_1^2
\end{aligned}
$
Solving (i) and (ii)

$
\text { we get, } x=a t_1 t_2, y=a\left(t_1+t_2\right)
$
Point of Intersection of tangents drawn at point $P$ and $Q$ is

$
\left(a t_1 t_2, a\left(t_1+t_2\right)\right)
$

Point of Intersection of tangents drawn at point P and Q is

$
\left(\mathbf{a t}_1 \mathbf{t}_{\mathbf{2}}, \mathbf{a}\left(\mathbf{t}_1+\mathbf{t}_{\mathbf{2}}\right)\right)
$
TIP
The locus of the point of intersection of the mutually perpendicular tangents to a parabola is the directrix of the parabola.

Study it with Videos

Tangents of Parabola in Point Form
Tangents of Parabola in Parametric Form
Tangents of Parabola in Slope Form

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Tangents of Parabola in Point Form

Mathematics for Joint Entrance Examination JEE (Advanced) : Coordinate Geometry

Page No. : 5.14

Line : 62

Tangents of Parabola in Parametric Form

Mathematics for Joint Entrance Examination JEE (Advanced) : Coordinate Geometry

Page No. : 5.14

Line : 62

E-books & Sample Papers

Get Answer to all your questions

Back to top