Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Extended Application Deadline: 30th Jan
Tangents of Parabola in Point Form, Tangents of Parabola in Slope Form is considered one of the most asked concept.
144 Questions around this concept.
If the tangent at $(1,7)$ to the curve $x^2=y-6$ touches the circle $x^2+y^2+16 x+12 y+c=0$ then the value of $c$ is :
If the line touches the parabola , then the value of is.
The angle between the tangents drawn to the parabola y2 = 12x from the point ( -3, 2 )
JEE Main 2025: Rank Predictor | College Predictor | Marks vs Rank vs Percentile
JEE Main 2025 Memory Based Question: Jan 22, 23, 24, 28 & 29 (Shift 1 & 2)
JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs
Let a line $y=m x(m>0)$ intersect the parabola, $y^2=x_{\text {at a point } \mathrm{P} \text {, other than the }}$ origin. Let the tangent to it at P meet the x-axis at the point Q . If area $(\triangle O P Q)=4$ sq.units, then m is equal to $\qquad$
The slope of the line touching both the parabolas y2= 4x and x2 = -32y is:
Let P be the point of intersection of the common tangents to the parabola $y^2=12 x$ and the hyperbola $8 x^2-y^2=8$. If S and $\mathrm{S}^{\prime}$ denote the foci of the hyperbola where S lies on the positive x-axis then P divides SS in a ratio :
What is the value of K in parabola $y^2=k x$ for the line $\mathrm{y}=3 \mathrm{x}-9$ as tangent to it ?
Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Extended Application Deadline: 30th Jan
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
The angle between the focal chord and the normal passing through point $P$ on the parabola $y^2=4 x$ is $60^{\circ}$. Then the slope of the tangent at point $P$ is
The locus of the point of intersection of perpendicular tangents to $y^2=4 ax$ is
Tangents are drawn to the parabola at the point and intersect at . If '' be the focus of the parabola then, SA, SC and SB forms
Tangents of Parabola in Point Form
Equation of the tangent to the parabola $y^2=4 a x$ at the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)$
The given equation is
$
y^2=4 a x
$
Differentiating with respect to $x$, we get
$
\begin{aligned}
& 2 \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=4 \mathrm{a} \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2 \mathrm{a}}{\mathrm{y}} \\
& \text { Now } m=\left(\frac{d y}{d x}\right)_{\left(x_1, y_1\right)}=\frac{2 a}{y_1}
\end{aligned}
$
Equation of tangent at point $\left(x_1, y_1\right)$
$
\begin{aligned}
& \Rightarrow \quad\left(\mathrm{y}-\mathrm{y}_1\right)=\frac{2 \mathrm{a}}{\mathrm{y}_1}\left(\mathrm{x}-\mathrm{x}_1\right) \\
& \Rightarrow \quad \mathrm{yy}_1-\mathrm{y}_1^2=2 \mathrm{ax}-2 \mathrm{ax}_1 \\
& \Rightarrow \quad \mathrm{yy}_1=2 \mathrm{ax}-2 \mathrm{ax}_1+4 \mathrm{ax}_1 \\
& \Rightarrow \quad \mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)
\end{aligned}
$
Note:
The same procedure can be applied to any general equation of parabola as well
For example, the tangent to $4 y=x^2+2 x-9$ at $\left(x_1, y_1\right)$ is $2\left(y+y_1\right)=x x_1+\left(x+x_1\right)-9$
Tangents of Parabola in Parametric Form
The equation of tangent to the parabola $y^2=4 a x$ at the point $\left(\mathrm{at}^2, 2 \mathrm{at}\right)$ is $\mathrm{ty}=\mathrm{x}+\mathrm{at}^2$
Proof:
Equation of the tangent to the parabola $y^2=4 a x$ at the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)$
replace $\mathrm{x}_1 \rightarrow \mathrm{at}^2, \mathrm{y}_1 \rightarrow 2$ at
$
y(2 a t)=2 a\left(x+a t^2\right) \Rightarrow y t=x+a t^2
$
Tangents of Parabola in Slope Form
Equation of the tangent to the parabola $y^2=4 a x$ at the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is
$
\mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)
$
If $m$ is the slope of the tangent, then
$
\mathrm{m}=\frac{2 \mathrm{a}}{\mathrm{y}_1} \Rightarrow \mathrm{y}_1=\frac{2 \mathrm{a}}{\mathrm{~m}}
$
$\left(\mathrm{x}_1, \mathrm{y}_1\right)$ lies on the parabola $\mathrm{y}^2=4 \mathrm{ax}$
$
\begin{aligned}
\mathrm{y}_1^2 & =4 \mathrm{ax}_1 \Rightarrow \frac{4 \mathrm{a}^2}{\mathrm{~m}^2}=4 \mathrm{ax}_1 \\
\therefore \quad \mathrm{x}_1 & =\frac{\mathrm{a}}{\mathrm{~m}^2}
\end{aligned}
$
put the value of $\mathrm{x}_1$ and $\mathrm{y}_1$ in the equation $\mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)$ we get
$
\Rightarrow \quad y=m x+\frac{a}{m}
$
Which is the equation of the tangent of the parabola in slope form.
The coordinates of point of contact are $\left(\frac{a}{m^2}, \frac{2 a}{m}\right)$
Slope form of tangent for other forms of parabola
Point of Intersection of Tangent
Two points, $P \equiv\left(a t_1^2, 2 a t_1\right)$ and $Q \equiv\left(a t_2^2, 2 a t\right)$ on the parabola $y^2=4 a x$.
Then, equation of tangents at $P$ and $Q$ are
$
\begin{aligned}
& t_1 y=x+a t_1^2 \\
& t_2 y=x+a t_1^2
\end{aligned}
$
Solving (i) and (ii)
$
\text { we get, } x=a t_1 t_2, y=a\left(t_1+t_2\right)
$
Point of Intersection of tangents drawn at point $P$ and $Q$ is
$
\left(a t_1 t_2, a\left(t_1+t_2\right)\right)
$
Point of Intersection of tangents drawn at point P and Q is
$
\left(\mathbf{a t}_1 \mathbf{t}_{\mathbf{2}}, \mathbf{a}\left(\mathbf{t}_1+\mathbf{t}_{\mathbf{2}}\right)\right)
$
TIP
The locus of the point of intersection of the mutually perpendicular tangents to a parabola is the directrix of the parabola.
"Stay in the loop. Receive exam news, study resources, and expert advice!"