JEE Mains 2025 Answer Key Release Date for Session 1 - Check NTA Update

Tangent to a Parabola - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Tangents of Parabola in Point Form, Tangents of Parabola in Slope Form is considered one of the most asked concept.

  • 144 Questions around this concept.

Solve by difficulty

If the tangent at $(1,7)$ to the curve $x^2=y-6$ touches the circle $x^2+y^2+16 x+12 y+c=0$ then the value of $c$ is :

If the line \mathrm{x+y-1=0} touches the parabola \mathrm{y^{2}=k x}, then the value of \mathrm{k} is.

The angle between the tangents drawn to the parabola y2 = 12x from the point ( -3, 2 )

Let a line $y=m x(m>0)$ intersect the parabola, $y^2=x_{\text {at a point } \mathrm{P} \text {, other than the }}$ origin. Let the tangent to it at P meet the x-axis at the point Q . If area $(\triangle O P Q)=4$ sq.units, then m is equal to $\qquad$

The slope of the line touching both the parabolas y2= 4x and x2 = -32y is:

Let P be the point of intersection of the common tangents to the parabola $y^2=12 x$ and the hyperbola $8 x^2-y^2=8$. If S and $\mathrm{S}^{\prime}$ denote the foci of the hyperbola where S lies on the positive x-axis then P divides SS in a ratio :

What is the value of K in parabola $y^2=k x$ for the line $\mathrm{y}=3 \mathrm{x}-9$ as tangent to it ?

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Extended Application Deadline: 30th Jan

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

The angle between the focal chord and the normal passing through point $P$ on the parabola $y^2=4 x$ is $60^{\circ}$. Then the slope of the tangent at point $P$ is

The locus of the point of intersection of perpendicular tangents to $y^2=4 ax$ is

JEE Main Exam's High Scoring Chapters and Topics
This free eBook covers JEE Main important chapters & topics to study just 40% of the syllabus and score up to 100% marks in the examination.
Download EBook

Tangents are drawn to the parabola \mathrm{Y}^{2}=4 \mathrm{ax} at the point \mathrm{A} and \mathrm{B}  intersect at \mathrm{C}. If '\mathrm{S}' be the focus of the parabola then, SA, SC and SB forms

Concepts Covered - 4

Tangents of Parabola in Point Form

Tangents of Parabola in  Point Form

Equation of the tangent to the parabola $y^2=4 a x$ at the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)$

The given equation is

$
y^2=4 a x
$
Differentiating with respect to $x$, we get

$
\begin{aligned}
& 2 \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=4 \mathrm{a} \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2 \mathrm{a}}{\mathrm{y}} \\
& \text { Now } m=\left(\frac{d y}{d x}\right)_{\left(x_1, y_1\right)}=\frac{2 a}{y_1}
\end{aligned}
$
Equation of tangent at point $\left(x_1, y_1\right)$

$
\begin{aligned}
& \Rightarrow \quad\left(\mathrm{y}-\mathrm{y}_1\right)=\frac{2 \mathrm{a}}{\mathrm{y}_1}\left(\mathrm{x}-\mathrm{x}_1\right) \\
& \Rightarrow \quad \mathrm{yy}_1-\mathrm{y}_1^2=2 \mathrm{ax}-2 \mathrm{ax}_1 \\
& \Rightarrow \quad \mathrm{yy}_1=2 \mathrm{ax}-2 \mathrm{ax}_1+4 \mathrm{ax}_1 \\
& \Rightarrow \quad \mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)
\end{aligned}
$
 

\begin{array}{c||c c} \\ \mathbf { Equation \;of \;Parabola } & {\mathbf { A \;tangent\; at\; } P\left(x_{1}, y_{1}\right)} \\ \\ \hline \hline\\y^{2}=4ax & {y y_{1}=2 a\left(x+x_{1}\right)} & {} \\\\ {y^{2}=-4 a x} & {y y_{1}=-2 a\left(x+x_{1}\right)} & {} \\\\ {x^{2}=4 a y} & {x x_{1}=2 a\left(y+y_{1}\right)} & {} \\\\ {x^{2}=-4 a y} & {x x_{1}=-2 a\left(y+y_{1}\right)} & {} \\ \end{array}

Note:

The same procedure can be applied to any general equation of parabola as well
For example, the tangent to $4 y=x^2+2 x-9$ at $\left(x_1, y_1\right)$ is $2\left(y+y_1\right)=x x_1+\left(x+x_1\right)-9$

Tangents of Parabola in Parametric Form

Tangents of Parabola in Parametric Form

The equation of tangent to the parabola $y^2=4 a x$ at the point $\left(\mathrm{at}^2, 2 \mathrm{at}\right)$ is $\mathrm{ty}=\mathrm{x}+\mathrm{at}^2$

Proof:
Equation of the tangent to the parabola $y^2=4 a x$ at the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)$
replace $\mathrm{x}_1 \rightarrow \mathrm{at}^2, \mathrm{y}_1 \rightarrow 2$ at

$
y(2 a t)=2 a\left(x+a t^2\right) \Rightarrow y t=x+a t^2
$

\begin{array}{c||c cl} \\\mathbf { {Equation \;of \;Parabola} } & {\mathbf { Coordinate }} & {\mathbf { Tangent\; Equation }}\\ \\ \hline\hline\\ {\color{Teal} y^{2}=4ax} & {\color{Teal} {\left(at^{2}, 2 a t\right)}} & {\color{Teal} {t y=x+a t^{2}}} \\ \\ {\color{Red} x^{2} {=4 a y}} & {\color{Red} {(2 a t, a t^2)}} & {\color{Red} {t x=y+a t^{2}}} \\ \\ {\color{Teal} y^{2}{=-4 a x}} & {\color{Teal} {\left(-a t^{2}, 2 a t\right)} }& {\color{Teal} {t y=-x+a t^{2}}} \\ \\ {\color{Red} x^{2} {=} {-4 a y}} & {\color{Red} {\left(2 a t,-at^{2}\right)}} & {\color{Red} {t x=-y+a t^{2}} }\\ \end{array}

Tangents of Parabola in Slope Form

Tangents of Parabola in Slope Form

Equation of the tangent to the parabola $y^2=4 a x$ at the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is

$
\mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)
$
If $m$ is the slope of the tangent, then

$
\mathrm{m}=\frac{2 \mathrm{a}}{\mathrm{y}_1} \Rightarrow \mathrm{y}_1=\frac{2 \mathrm{a}}{\mathrm{~m}}
$

$\left(\mathrm{x}_1, \mathrm{y}_1\right)$ lies on the parabola $\mathrm{y}^2=4 \mathrm{ax}$

$
\begin{aligned}
\mathrm{y}_1^2 & =4 \mathrm{ax}_1 \Rightarrow \frac{4 \mathrm{a}^2}{\mathrm{~m}^2}=4 \mathrm{ax}_1 \\
\therefore \quad \mathrm{x}_1 & =\frac{\mathrm{a}}{\mathrm{~m}^2}
\end{aligned}
$

put the value of $\mathrm{x}_1$ and $\mathrm{y}_1$ in the equation $\mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)$ we get

$
\Rightarrow \quad y=m x+\frac{a}{m}
$

Which is the equation of the tangent of the parabola in slope form.
The coordinates of point of contact are $\left(\frac{a}{m^2}, \frac{2 a}{m}\right)$

Slope form of tangent for other forms of parabola

\begin{array}{c||cc} \mathbf { Equation \;of \;Parabola } & {\mathbf { Point \;of \;Contact }} & {\mathbf { Tangent\; Equation }} \\\\ \hline\hline \\ {\color{Black} y^{2}{=4 a x}} & {\color{Black} {\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right)}} & {\color{Black} {y=m x+\frac{a}{m}}}\\ \\ {\color{Black} y^{2}{=-4 a x}} & {\color{Black} {\left(-\frac{a}{m^{2}}, \frac{2 a}{m}\right)}} & {\color{Black} {y=m x-\frac{a}{m}}} \\\\ {\color{Black} x^{2}{=4 a y}} & {\color{Black} {\left(2am, am^2\right)}} & {\color{Black} {y=m x-am^2}} \\\\ {\color{Black} x^{2}{=-4 a y}} & {\color{Black} {\left(2am, -am^2\right)}} & {\color{Black} {y=m x+am^2}} \end{array}
 

 

 

Point of Intersection of Tangent

Point of Intersection of Tangent

Two points, $P \equiv\left(a t_1^2, 2 a t_1\right)$ and $Q \equiv\left(a t_2^2, 2 a t\right)$ on the parabola $y^2=4 a x$.
Then, equation of tangents at $P$ and $Q$ are

$
\begin{aligned}
& t_1 y=x+a t_1^2 \\
& t_2 y=x+a t_1^2
\end{aligned}
$
Solving (i) and (ii)

$
\text { we get, } x=a t_1 t_2, y=a\left(t_1+t_2\right)
$
Point of Intersection of tangents drawn at point $P$ and $Q$ is

$
\left(a t_1 t_2, a\left(t_1+t_2\right)\right)
$

Point of Intersection of tangents drawn at point P and Q is

$
\left(\mathbf{a t}_1 \mathbf{t}_{\mathbf{2}}, \mathbf{a}\left(\mathbf{t}_1+\mathbf{t}_{\mathbf{2}}\right)\right)
$
TIP
The locus of the point of intersection of the mutually perpendicular tangents to a parabola is the directrix of the parabola.

Study it with Videos

Tangents of Parabola in Point Form
Tangents of Parabola in Parametric Form
Tangents of Parabola in Slope Form

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Tangents of Parabola in Point Form

Mathematics for Joint Entrance Examination JEE (Advanced) : Coordinate Geometry

Page No. : 5.14

Line : 62

Tangents of Parabola in Parametric Form

Mathematics for Joint Entrance Examination JEE (Advanced) : Coordinate Geometry

Page No. : 5.14

Line : 62

E-books & Sample Papers

Get Answer to all your questions

Back to top