JEE Main 2025 Topper Rajit Gupta Interview: "Happiness is the Key to My Success"

Tangent to a Parabola - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Tangents of Parabola in Point Form, Tangents of Parabola in Slope Form is considered one of the most asked concept.

  • 153 Questions around this concept.

Solve by difficulty

If the tangent at $(1,7)$ to the curve $x^2=y-6$ touches the circle $x^2+y^2+16 x+12 y+c=0$ then the value of $c$ is :

If the line \mathrm{x+y-1=0} touches the parabola \mathrm{y^{2}=k x}, then the value of \mathrm{k} is.

The angle between the tangents drawn to the parabola y2 = 12x from the point ( -3, 2 )

Let a line $y=m x(m>0)$ intersect the parabola, $y^2=x_{\text {at a point } \mathrm{P} \text {, other than the }}$ origin. Let the tangent to it at P meet the x-axis at the point Q . If area $(\triangle O P Q)=4$ sq.units, then m is equal to $\qquad$

The slope of the line touching both the parabolas y2= 4x and x2 = -32y is:

Let P be the point of intersection of the common tangents to the parabola $y^2=12 x$ and the hyperbola $8 x^2-y^2=8$. If S and $\mathrm{S}^{\prime}$ denote the foci of the hyperbola where S lies on the positive x-axis then P divides SS in a ratio :

What is the value of K in parabola $y^2=k x$ for the line $\mathrm{y}=3 \mathrm{x}-9$ as tangent to it ?

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 28th April

ICFAI University Hyderabad B.Tech Admissions 2025

Merit Scholarships | NAAC A+ Accredited | Top Recruiters : E&Y, CYENT, Nvidia, CISCO, Genpact, Amazon & many more

The angle between the focal chord and the normal passing through point $P$ on the parabola $y^2=4 x$ is $60^{\circ}$. Then the slope of the tangent at point $P$ is

The locus of the point of intersection of perpendicular tangents to $y^2=4 ax$ is

JEE Main 2025 College Predictor
Know your college admission chances in NITs, IIITs and CFTIs, many States/ Institutes based on your JEE Main rank by using JEE Main 2025 College Predictor.
Use Now

Tangents are drawn to the parabola \mathrm{Y}^{2}=4 \mathrm{ax} at the point \mathrm{A} and \mathrm{B}  intersect at \mathrm{C}. If '\mathrm{S}' be the focus of the parabola then, SA, SC and SB forms

Concepts Covered - 4

Tangents of Parabola in Point Form

Tangents of Parabola in  Point Form

Equation of the tangent to the parabola $y^2=4 a x$ at the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)$

The given equation is

$
y^2=4 a x
$
Differentiating with respect to $x$, we get

$
\begin{aligned}
& 2 \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=4 \mathrm{a} \\
& \Rightarrow \quad \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{2 \mathrm{a}}{\mathrm{y}} \\
& \text { Now } m=\left(\frac{d y}{d x}\right)_{\left(x_1, y_1\right)}=\frac{2 a}{y_1}
\end{aligned}
$
Equation of tangent at point $\left(x_1, y_1\right)$

$
\begin{aligned}
& \Rightarrow \quad\left(\mathrm{y}-\mathrm{y}_1\right)=\frac{2 \mathrm{a}}{\mathrm{y}_1}\left(\mathrm{x}-\mathrm{x}_1\right) \\
& \Rightarrow \quad \mathrm{yy}_1-\mathrm{y}_1^2=2 \mathrm{ax}-2 \mathrm{ax}_1 \\
& \Rightarrow \quad \mathrm{yy}_1=2 \mathrm{ax}-2 \mathrm{ax}_1+4 \mathrm{ax}_1 \\
& \Rightarrow \quad \mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)
\end{aligned}
$
 

\begin{array}{c||c c} \\ \mathbf { Equation \;of \;Parabola } & {\mathbf { A \;tangent\; at\; } P\left(x_{1}, y_{1}\right)} \\ \\ \hline \hline\\y^{2}=4ax & {y y_{1}=2 a\left(x+x_{1}\right)} & {} \\\\ {y^{2}=-4 a x} & {y y_{1}=-2 a\left(x+x_{1}\right)} & {} \\\\ {x^{2}=4 a y} & {x x_{1}=2 a\left(y+y_{1}\right)} & {} \\\\ {x^{2}=-4 a y} & {x x_{1}=-2 a\left(y+y_{1}\right)} & {} \\ \end{array}

Note:

The same procedure can be applied to any general equation of parabola as well
For example, the tangent to $4 y=x^2+2 x-9$ at $\left(x_1, y_1\right)$ is $2\left(y+y_1\right)=x x_1+\left(x+x_1\right)-9$

Tangents of Parabola in Parametric Form

Tangents of Parabola in Parametric Form

The equation of tangent to the parabola $y^2=4 a x$ at the point $\left(\mathrm{at}^2, 2 \mathrm{at}\right)$ is $\mathrm{ty}=\mathrm{x}+\mathrm{at}^2$

Proof:
Equation of the tangent to the parabola $y^2=4 a x$ at the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)$
replace $\mathrm{x}_1 \rightarrow \mathrm{at}^2, \mathrm{y}_1 \rightarrow 2$ at

$
y(2 a t)=2 a\left(x+a t^2\right) \Rightarrow y t=x+a t^2
$

\begin{array}{c||c cl} \\\mathbf { {Equation \;of \;Parabola} } & {\mathbf { Coordinate }} & {\mathbf { Tangent\; Equation }}\\ \\ \hline\hline\\ {\color{Teal} y^{2}=4ax} & {\color{Teal} {\left(at^{2}, 2 a t\right)}} & {\color{Teal} {t y=x+a t^{2}}} \\ \\ {\color{Red} x^{2} {=4 a y}} & {\color{Red} {(2 a t, a t^2)}} & {\color{Red} {t x=y+a t^{2}}} \\ \\ {\color{Teal} y^{2}{=-4 a x}} & {\color{Teal} {\left(-a t^{2}, 2 a t\right)} }& {\color{Teal} {t y=-x+a t^{2}}} \\ \\ {\color{Red} x^{2} {=} {-4 a y}} & {\color{Red} {\left(2 a t,-at^{2}\right)}} & {\color{Red} {t x=-y+a t^{2}} }\\ \end{array}

Tangents of Parabola in Slope Form

Tangents of Parabola in Slope Form

Equation of the tangent to the parabola $y^2=4 a x$ at the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is

$
\mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)
$
If $m$ is the slope of the tangent, then

$
\mathrm{m}=\frac{2 \mathrm{a}}{\mathrm{y}_1} \Rightarrow \mathrm{y}_1=\frac{2 \mathrm{a}}{\mathrm{~m}}
$

$\left(\mathrm{x}_1, \mathrm{y}_1\right)$ lies on the parabola $\mathrm{y}^2=4 \mathrm{ax}$

$
\begin{aligned}
\mathrm{y}_1^2 & =4 \mathrm{ax}_1 \Rightarrow \frac{4 \mathrm{a}^2}{\mathrm{~m}^2}=4 \mathrm{ax}_1 \\
\therefore \quad \mathrm{x}_1 & =\frac{\mathrm{a}}{\mathrm{~m}^2}
\end{aligned}
$

put the value of $\mathrm{x}_1$ and $\mathrm{y}_1$ in the equation $\mathrm{yy}_1=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_1\right)$ we get

$
\Rightarrow \quad y=m x+\frac{a}{m}
$

Which is the equation of the tangent of the parabola in slope form.
The coordinates of point of contact are $\left(\frac{a}{m^2}, \frac{2 a}{m}\right)$

Slope form of tangent for other forms of parabola

\begin{array}{c||cc} \mathbf { Equation \;of \;Parabola } & {\mathbf { Point \;of \;Contact }} & {\mathbf { Tangent\; Equation }} \\\\ \hline\hline \\ {\color{Black} y^{2}{=4 a x}} & {\color{Black} {\left(\frac{a}{m^{2}}, \frac{2 a}{m}\right)}} & {\color{Black} {y=m x+\frac{a}{m}}}\\ \\ {\color{Black} y^{2}{=-4 a x}} & {\color{Black} {\left(-\frac{a}{m^{2}}, \frac{2 a}{m}\right)}} & {\color{Black} {y=m x-\frac{a}{m}}} \\\\ {\color{Black} x^{2}{=4 a y}} & {\color{Black} {\left(2am, am^2\right)}} & {\color{Black} {y=m x-am^2}} \\\\ {\color{Black} x^{2}{=-4 a y}} & {\color{Black} {\left(2am, -am^2\right)}} & {\color{Black} {y=m x+am^2}} \end{array}
 

 

 

Point of Intersection of Tangent

Point of Intersection of Tangent

Two points, $P \equiv\left(a t_1^2, 2 a t_1\right)$ and $Q \equiv\left(a t_2^2, 2 a t\right)$ on the parabola $y^2=4 a x$.
Then, equation of tangents at $P$ and $Q$ are

$
\begin{aligned}
& t_1 y=x+a t_1^2 \\
& t_2 y=x+a t_1^2
\end{aligned}
$
Solving (i) and (ii)

$
\text { we get, } x=a t_1 t_2, y=a\left(t_1+t_2\right)
$
Point of Intersection of tangents drawn at point $P$ and $Q$ is

$
\left(a t_1 t_2, a\left(t_1+t_2\right)\right)
$

Point of Intersection of tangents drawn at point P and Q is

$
\left(\mathbf{a t}_1 \mathbf{t}_{\mathbf{2}}, \mathbf{a}\left(\mathbf{t}_1+\mathbf{t}_{\mathbf{2}}\right)\right)
$
TIP
The locus of the point of intersection of the mutually perpendicular tangents to a parabola is the directrix of the parabola.

Study it with Videos

Tangents of Parabola in Point Form
Tangents of Parabola in Parametric Form
Tangents of Parabola in Slope Form

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Tangents of Parabola in Point Form

Mathematics for Joint Entrance Examination JEE (Advanced) : Coordinate Geometry

Page No. : 5.14

Line : 62

Tangents of Parabola in Parametric Form

Mathematics for Joint Entrance Examination JEE (Advanced) : Coordinate Geometry

Page No. : 5.14

Line : 62

E-books & Sample Papers

Get Answer to all your questions

Back to top