Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Sum of n-term of a GP is considered one of the most asked concept.
39 Questions around this concept.
The least positive integer n such that is
If in a G.P. of 64 terms, the sum of all the terms is 7 times the sum of the odd terms of the G.P, then the common ratio of the G.P. is equal to
If each term of a geometric progression $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \ldots$ with $\mathrm{a}_1=\frac{1}{8}$ and $\mathrm{a}_2 \neq \mathrm{a}_1$, is the arithmetic mean of the next two terms and $\mathrm{S}_{\mathrm{n}}=\mathrm{a}_1+\mathrm{a}_2+\ldots+\mathrm{a}_{\mathrm{n}}$, then $\mathrm{S}_{20}-\mathrm{S}_{18}$ is equal to
New: JEE Main 2025 Admit Card OUT; Download Now
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Free Crash Course
If $S_1$ is the sum of 10 terms of $1, \frac{1}{2}, \frac{1}{4}, \ldots$ and $S_2$ is the sum of infinite terms of this sequence, then $S_2-S_1$ is
Let $a$, ar, $a r^2$, ......be an infinite G.P. If $\sum_{n=0}^{\infty} a^n=57$ and $\sum_{n=0}^{\infty} a^3 r^{3 n}=9747$, then $a+18 r$ is equal to :
The sum of the n-term of a GP
Let $S_n$ be the sum of $n$ terms of the G.P. with the first term ' $a$ ' and common ratio ' $r$ '. Then
$
S_n=a+a r+a r^2+\ldots+a r^{n-2}+a r^{n-1}
$
Multiply both sides with $r$
$
r S_n=a r+a r^2+a r^3+\ldots+a r^{n-1}+a r^n
$
Subtract (ii) from (i)
$
\begin{aligned}
& S_n-r S_n=a-a r^n \\
& \Rightarrow \mathrm{~S}_{\mathrm{n}}=\frac{\mathrm{a}-\mathrm{ar}^{\mathrm{n}}}{1-\mathrm{r}}=\mathrm{a}\left(\frac{1-\mathrm{r}^{\mathrm{n}}}{1-\mathrm{r}}\right) \\
& \Rightarrow \mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(\frac{\mathrm{r}^{\mathrm{n}}-1}{\mathrm{r}-1}\right)
\end{aligned}
$
The above formula does not hold for $r=1$
For $\mathrm{r}=1$, each of the n terms is equal to a, and thus the sum of n terms of the G.P. is $S_n=n a$.
The sum of an infinite GP
If a is the first term and $r$ is the common ratio of a G.P. Then,
$
\mathrm{S}_{\mathrm{n}}=\mathrm{a}\left(\frac{1-\mathrm{r}^{\mathrm{n}}}{1-\mathrm{r}}\right)=\frac{\mathrm{a}}{1-\mathrm{r}}-\frac{\mathrm{ar}^{\mathrm{n}}}{1-\mathrm{r}}
$
Let, $-1<r<1$, i.e. $|r|<1$, then
$
\lim _{n \rightarrow \infty} r^n=0
$
[as this is infinite G.P., so $n$ tends to infinity]
$
S_{\infty}=\frac{a}{1-r}
$
$S_{\infty}$ Is the sum of infinite terms of the G.P.
Note: If $r \geq 1$, then the sum of an infinite G.P. tends to infinity.
Application of GP
To write a non-terminating repeating number in p/q form:
Example:
The value of 0.358585858585.
$
\begin{aligned}
& 0.3 \overline{58}=0.358585858 \ldots \ldots \text { to } \infty \\
& \Rightarrow 0.3+0.058+0.00058+0.0000058+\ldots \ldots \\
& \Rightarrow \frac{3}{10}+\frac{58}{10^3}+\frac{58}{10^5}+\frac{58}{10^7}+\ldots \ldots \ldots \ldots \\
& \Rightarrow \frac{3}{10}+\frac{58}{10^3}\left(1+\frac{1}{10^2}+\frac{1}{10^4}+\ldots .\right) \\
& \Rightarrow \frac{3}{10}+\frac{58}{10^3}\left(\frac{1}{1-\frac{1}{10^2}}\right) \\
& \Rightarrow \frac{355}{990}
\end{aligned}
$
Application of GP
The sum of $n$-term of the series $a+a a+a a a+a a a a+\ldots \ldots \ldots, \forall a \in \mathbb{N}, 1 \leq a \leq 9$ is $\frac{a}{9}\left[\frac{10}{9}\left(10^n-1\right)-n\right]$
The sum of $n$-term of the series $0 . a+0 . a a+0 . a a a+0 . a a a a+\ldots ., \quad \forall a \in \mathbb{N}, \quad 1 \leq a \leq 9$ is $\frac{a}{9}\left\{n-\frac{1}{9}\left[1-\left(\frac{1}{10}\right)^n\right]\right\}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"