JEE Main 2025 Admit Card Released for January 22, 23, 24 - Check How to Download

Harmonic Mean in HP - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Harmonic Mean is considered one of the most asked concept.

  • 12 Questions around this concept.

Solve by difficulty

If the system of linear equations x+2ay+az=0,    x+3by+bz=0,    x+4cy+cz=0

has a non­-zero solution, then a,b,c

For any three positive real numbers a, b and c, 9(25a2+b2)+25(c2−3ac)=15b(3a+c). Then:

A man is walking in a straight line with the arithmetic mean of the reciprocals of the intercepts of this line on the coordinate axes $\frac{1}{4}$. Three stones $A, B$ and $C$ are placed at points $(1,1),(2,2)$ and $(4,4)$ respectively. Then which of these stones is/are on the path of man?

Find the harmonic mean of:

$
2,7,6,14,12
$
 

Concepts Covered - 2

Harmonic Mean

Harmonic Mean

$
H=\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\ldots+\frac{1}{a_n}}
$
If $a_1, a_2, a_3, \ldots ., a_n$ are $n$ positive numbers, then the Harmonic Mean of these numbers is given by If $a$ and $b$ are two numbers and $H$ is the $H M$ of $a$ and $b$. Then, $a, H, b$ are in harmonic progression. Hence,

$
\mathrm{H}=\frac{2}{\frac{1}{a}+\frac{1}{b}}=\frac{2 a b}{a+b}
$
Note that if the AM betw
$\frac{\frac{1}{a}+\frac{1}{b}}{2}$ i.e. $\frac{2 a b}{a+b}$.

Insertion of $\mathbf{n}$-Harmonic Mean Between $\mathbf{a}$ and $\mathbf{b}$
Let $\mathrm{H}_1, \mathrm{H}_2, \mathrm{H}_3 \ldots, \mathrm{H}_{\mathrm{n}}$ be n harmonic mean between two numbers a and b. Then, $a, \mathrm{H}_1, \mathrm{H}_2, \mathrm{H}_3 \ldots, \mathrm{H}_{\mathrm{n}}, b$ is in $\mathrm{H} . \mathrm{P}$.
Hence, $\frac{1}{a}, \frac{1}{\mathrm{H}_1}, \frac{1}{\mathrm{H}_2}, \ldots, \frac{1}{\mathrm{H}_{\mathrm{n}}}, \frac{1}{b}$ are in A.P.

This H.P. contains $\mathrm{n}+2$ terms.
Let, D be the common difference of this A.P. Then,

$
\begin{aligned}
& \therefore \frac{1}{\mathrm{~b}}=(n+2)^{t h} \text { term of } \mathrm{AP} \\
& \Rightarrow \frac{1}{\mathrm{~b}}=\frac{1}{\mathrm{a}}+(\mathrm{n}+1) \mathrm{D} \\
& \Rightarrow \mathrm{D}=\frac{\mathrm{a}-\mathrm{b}}{(\mathrm{n}+1) \mathrm{ab}}
\end{aligned}
$
 

Important Property of HM

Important Property of HM
The sum of reciprocals of n harmonic means between two numbers is n times the reciprocal of a single H.M. between them.
Proof:
Let $\mathrm{H}_1, \mathrm{H}_2, \mathrm{H}_3 \ldots, \mathrm{H}_{\mathrm{n}}$ be n harmonic means between two numbers a and b. Then, $a, \mathrm{H}_1, \mathrm{H}_2, \mathrm{H}_3 \ldots, \mathrm{H}_{\mathrm{n}}, b$ is an H.P.

$
\begin{aligned}
\therefore \frac{1}{\mathrm{H}_1} & +\frac{1}{\mathrm{H}_2}+\frac{1}{\mathrm{H}_3}+\ldots+\frac{1}{\mathrm{H}_{\mathrm{n}}}=\frac{\mathrm{n}}{2}\left(\frac{1}{\mathrm{H}_1}+\frac{1}{\mathrm{H}_{\mathrm{n}}}\right) \\
& =\frac{\mathrm{n}}{2}\left(\frac{1}{\mathrm{a}}+\mathrm{D}+\frac{1}{\mathrm{~b}}-\mathrm{D}\right)=\frac{\mathrm{n}}{2}\left(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}\right) \\
& =\frac{\mathrm{n}}{[\text { H.M. of } a \text { and } b]}
\end{aligned}
$
 

Study it with Videos

Harmonic Mean
Important Property of HM

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Harmonic Mean

Mathematics for Joint Entrance Examination JEE (Advanced) : Algebra

Page No. : 5.20

Line : 44

Important Property of HM

Mathematics for Joint Entrance Examination JEE (Advanced) : Algebra

Page No. : 5.20

Line : 44

E-books & Sample Papers

Get Answer to all your questions

Back to top