Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Harmonic Mean is considered one of the most asked concept.
12 Questions around this concept.
If the system of linear equations
has a non-zero solution, then
For any three positive real numbers a, b and c, 9(25a2+b2)+25(c2−3ac)=15b(3a+c). Then:
A man is walking in a straight line with the arithmetic mean of the reciprocals of the intercepts of this line on the coordinate axes $\frac{1}{4}$. Three stones $A, B$ and $C$ are placed at points $(1,1),(2,2)$ and $(4,4)$ respectively. Then which of these stones is/are on the path of man?
New: JEE Main 2025 Admit Card OUT; Download Now
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Free Crash Course
Find the harmonic mean of:
$
2,7,6,14,12
$
Harmonic Mean
$
H=\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+\ldots+\frac{1}{a_n}}
$
If $a_1, a_2, a_3, \ldots ., a_n$ are $n$ positive numbers, then the Harmonic Mean of these numbers is given by If $a$ and $b$ are two numbers and $H$ is the $H M$ of $a$ and $b$. Then, $a, H, b$ are in harmonic progression. Hence,
$
\mathrm{H}=\frac{2}{\frac{1}{a}+\frac{1}{b}}=\frac{2 a b}{a+b}
$
Note that if the AM betw
$\frac{\frac{1}{a}+\frac{1}{b}}{2}$ i.e. $\frac{2 a b}{a+b}$.
Insertion of $\mathbf{n}$-Harmonic Mean Between $\mathbf{a}$ and $\mathbf{b}$
Let $\mathrm{H}_1, \mathrm{H}_2, \mathrm{H}_3 \ldots, \mathrm{H}_{\mathrm{n}}$ be n harmonic mean between two numbers a and b. Then, $a, \mathrm{H}_1, \mathrm{H}_2, \mathrm{H}_3 \ldots, \mathrm{H}_{\mathrm{n}}, b$ is in $\mathrm{H} . \mathrm{P}$.
Hence, $\frac{1}{a}, \frac{1}{\mathrm{H}_1}, \frac{1}{\mathrm{H}_2}, \ldots, \frac{1}{\mathrm{H}_{\mathrm{n}}}, \frac{1}{b}$ are in A.P.
This H.P. contains $\mathrm{n}+2$ terms.
Let, D be the common difference of this A.P. Then,
$
\begin{aligned}
& \therefore \frac{1}{\mathrm{~b}}=(n+2)^{t h} \text { term of } \mathrm{AP} \\
& \Rightarrow \frac{1}{\mathrm{~b}}=\frac{1}{\mathrm{a}}+(\mathrm{n}+1) \mathrm{D} \\
& \Rightarrow \mathrm{D}=\frac{\mathrm{a}-\mathrm{b}}{(\mathrm{n}+1) \mathrm{ab}}
\end{aligned}
$
Important Property of HM
The sum of reciprocals of n harmonic means between two numbers is n times the reciprocal of a single H.M. between them.
Proof:
Let $\mathrm{H}_1, \mathrm{H}_2, \mathrm{H}_3 \ldots, \mathrm{H}_{\mathrm{n}}$ be n harmonic means between two numbers a and b. Then, $a, \mathrm{H}_1, \mathrm{H}_2, \mathrm{H}_3 \ldots, \mathrm{H}_{\mathrm{n}}, b$ is an H.P.
$
\begin{aligned}
\therefore \frac{1}{\mathrm{H}_1} & +\frac{1}{\mathrm{H}_2}+\frac{1}{\mathrm{H}_3}+\ldots+\frac{1}{\mathrm{H}_{\mathrm{n}}}=\frac{\mathrm{n}}{2}\left(\frac{1}{\mathrm{H}_1}+\frac{1}{\mathrm{H}_{\mathrm{n}}}\right) \\
& =\frac{\mathrm{n}}{2}\left(\frac{1}{\mathrm{a}}+\mathrm{D}+\frac{1}{\mathrm{~b}}-\mathrm{D}\right)=\frac{\mathrm{n}}{2}\left(\frac{1}{\mathrm{a}}+\frac{1}{\mathrm{~b}}\right) \\
& =\frac{\mathrm{n}}{[\text { H.M. of } a \text { and } b]}
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"