JEE Main Registration 2025 Session 1 (Open) - Link, Last Date, Fees, How to Apply

Harmonic Mean in HP - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Harmonic Mean is considered one of the most asked concept.

  • 9 Questions around this concept.

Solve by difficulty

If the system of linear equations x+2ay+az=0,    x+3by+bz=0,    x+4cy+cz=0

has a non­-zero solution, then a,b,c

For any three positive real numbers a, b and c, 9(25a2+b2)+25(c2−3ac)=15b(3a+c). Then:

Concepts Covered - 2

Harmonic Mean

Harmonic Mean

If a_1,a_2,a_3,.....,a_n are n positive numbers, then the Harmonic Mean of these numbers is given by  H=\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\frac{1}{a_3}+....+\frac{1}{a_n}}.

If a and b are two numbers and H is the HM of a and b. Then, a, H, b are in harmonic progression.  Hence,

\mathrm{H=\mathit{\frac{2}{\frac{1}{a}+\frac{1}{b}}}=\mathit{\frac{2ab}{a+b}}}

Note that if the AM between two numbers a and b is \frac{a+b}{2}, it does NOT follow that HM between the same numbers is \frac{2}{a+b}. The HM is the reciprocal of  \frac{\frac{1}{a}+\frac{1}{b}}{2}\;\;\mathrm{i.e.}\;\;\frac{2ab}{a+b} .
 

Insertion of n-Harmonic Mean Between a and b

Let \\\mathrm{\;H_1,H_2,H_3....,H_n} be n harmonic mean between two numbers a and b. Then, \mathrm{\mathit{a},H_1,H_2,H_3....,H_n,\mathit{b}} is in H.P. 

\\\mathrm{Hence, \;\;\mathit{\frac{1}{a}},\frac{1}{H_1},\frac{1}{H_2},...,\frac{1}{H_n},\mathit{\frac{1}{b}}\;are\;in\;A.P.}

Clearly, this H.P. contains n + 2 terms.

Let, D be the common difference of this A.P. Then, 

\\\mathrm{\therefore {\frac{1}{b}}=\mathit{(n+2)^{th}}\;term\;of\;AP}\\\\\mathrm{\Rightarrow \frac{1}{b}=\frac{1}{a}+(n+1)D}\\\mathrm{\Rightarrow D=\frac{a-b}{(n+1)ab}}

Important Property of HM

Important Property of HM

The sum of reciprocals of n harmonic means between two numbers is n times the reciprocal of a single H.M. between them.

Proof:

Let \\\mathrm{\;H_1,H_2,H_3....,H_n} be n harmonic means between two numbers a and b. Then, \mathrm{\mathit{a},H_1,H_2,H_3....,H_n,\mathit{b}} is an H.P. 

\\\mathrm{\therefore \;\;\frac{1}{H_1}+\frac{1}{H_2}+\frac{1}{H_3}+....+\frac{1}{H_n}=\frac{n}{2}\left ( \frac{1}{H_1}+\frac{1}{H_n} \right )}\\\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left [ \because S_n=\frac{n}{2}(a+l) \right ]}\\\mathrm{\;\;\;\;\;\;\;\;\;\;=\frac{n}{2}\left ( \frac{1}{a}+D+\frac{1}{b}-D \right )=\frac{n}{2}\left ( \frac{1}{a}+\frac{1}{b}\right )}\\\\\mathrm{\;\;\;\;\;\;\;\;\;\;=\frac{n}{\left [ H.M.\;of\;\mathit{a}\;and\;\mathit{b} \right ]}}

Study it with Videos

Harmonic Mean
Important Property of HM

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Harmonic Mean

Mathematics for Joint Entrance Examination JEE (Advanced) : Algebra

Page No. : 5.20

Line : 44

Important Property of HM

Mathematics for Joint Entrance Examination JEE (Advanced) : Algebra

Page No. : 5.20

Line : 44

E-books & Sample Papers

Get Answer to all your questions

Back to top