Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
Geometric Mean is considered one of the most asked concept.
26 Questions around this concept.
Let G be the geometric mean of two positive numbers a and b, and M be the arithmetic mean of and
if is 4:5 then a:b can be:
For any three positive real numbers a, b and c, 9(25a2+b2)+25(c2−3ac)=15b(3a+c). Then:
Find the geometric mean of the following 7 data :
$
7,2,3,9,4,3,11
$
Latest: Free All-India JEE Main 2026 Mock Test - Attempt Now
JEE Main Sample Papers: Physics | Chemistry | Maths | Top 30 Repeated Questions
JEE Main QP & Mock: Previous 10 Year Questions | Chapter Wise PYQs | Mock test Series
JEE Main Most Scoring Concept: January 2025 Session | April 2025 Session | Overall
Find the geometric mean of the following observations
$
2,7,9,14
$
Find the correct G.M of the following :
| x | 2 | 3 | 4 | 5 |
| f | 2 | 1 | 3 | 2 |
If $d_1, d_2$ are two $\mathbf{G M s}$ between two numbers x and y then
$
\frac{d 1^2}{d_2}+\frac{d 2^2}{d_1} \text { is equal to }
$
If a,b, c are in G.P and $a^x=b^y=c^z$ then
Let three real numbers a, b, c be in arithmetic progression and a+1, b, c+3 be in geometric progression. If a>10 and the arithmetic mean of a, b and c is 8 , then the cube of the geometric mean of a, b and c is
The arithmetic means and the geometric mean of two distinct 2-digit numbers $x$ and $y$ are two integers one of which can be obtained by reversing the digits of the other (in base 10 representation). Then $x+y$ equals
If three terms are in G.P., then the middle term is called the Geometric Mean (G.M.) of the other two numbers. So if, a, b and c are in G.P., then b is GM of a and c, If $a_1, a_2, a_3, \ldots ., a_n$ are $n$ positive numbers, then the Geometric Mean of these numbers is given by $G=\sqrt[n]{a_1 \cdot a_2 \cdot a_3 \cdot \ldots \ldots \cdot a_n}$.
If $a$ and $b$ are two numbers and $G$ is the GM of $a$ and $b$. Then, $a, G, b$ are in geometric progression.
Hence, $G=\sqrt{a \cdot b}$.
Insertion of $\mathbf{n}$-Geometric Mean Between $\mathbf{a}$ and $\mathbf{b}$
Let $\mathrm{G}_1, \mathrm{G}_2, \mathrm{G}_3 \ldots, \mathrm{G}_{\mathrm{n}}$ be n geometric mean between two numbers a and b . Then, $a, \mathrm{G}_1, \mathrm{G}_2, \mathrm{G}_3 \ldots, \mathrm{G}_{\mathrm{n}}, b_{\text {is an }}$. P . Clearly, this $\mathrm{G} . \mathrm{P}$. contains $\mathrm{n}+2$ terms. now, $b=(\mathrm{n}+2)^{\mathrm{th}}$ term $=\operatorname{ar}^{\mathrm{n}+2-1}$
$
\therefore r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}
$
[where, $\mathrm{r}=$ common ratio]
$
\begin{aligned}
& \therefore \mathrm{G}_1=\mathrm{ar}, \mathrm{G}_2=\mathrm{ar}^2, \mathrm{G}_3=\mathrm{ar}^3, \ldots, \mathrm{Ga}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}} \\
& \Rightarrow \mathrm{G}_1=\mathrm{a}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)^{\frac{1}{\mathrm{n}+1}}, \mathrm{G}_2=\mathrm{a}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)^{\frac{2}{\mathrm{n}+1}}, \mathrm{G}_3=\mathrm{a}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)^{\frac{3}{\mathrm{n}+1}} \ldots \ldots
\end{aligned}
$
$\mathrm{G}_{\mathrm{n}}=\mathrm{a}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{\frac{\mathrm{n}}{\mathrm{n}+1}}$
Important Property of GM
The product of $n$ geometric mean between $a$ and $b$ is equal to the $\mathrm{n}^{\text {th }}$ power of a single geometric mean between $a$ and $b$.
If $a$ and b are two numbers and $\mathrm{G}_1, \mathrm{G}_2, \mathrm{G}_3 \ldots, \mathrm{G}_{\mathrm{n}}$ are n-geometric mean between a and b , then $a, \mathrm{G}_1, \mathrm{G}_2, \mathrm{G}_3 \ldots, \mathrm{G}_{\mathrm{n}}, b$ will be in geometric progression.
So, Product of n-G.M's between $a$ and $b$ is
$
\begin{aligned}
& \mathrm{G}_1 \cdot \mathrm{G}_2 \cdot \mathrm{G}_3 \cdot \ldots \cdot \mathrm{G}_{\mathrm{n}}=(a r)\left(a r^2\right)\left(a r^3\right) \ldots\left(a r^n\right) \\
& \Rightarrow\left(a^{1+1+1+\ldots \mathrm{n}-\mathrm{times}}\right)\left(r^{1+2+3+\ldots+n}\right) \\
& \Rightarrow a^n\left(r^{\left.\left(\frac{n(n+1)}{2}\right)\right)} \quad\left(1+2+\ldots . .+n=\frac{n(n+1)}{2} U \text { sing sum of } A P\right)\right. \\
& \text { replace } r \text { with }\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{\left(\frac{1}{\mathrm{n}+1}\right)} \\
& \Rightarrow a^n \cdot\left[\left(\frac{b}{a}\right)^{\frac{1}{n+1}}\right]^{\frac{n(n+1)}{2}}=a^n\left(\frac{b}{a}\right)^{\frac{n}{2}} \\
& \Rightarrow(a)^{\frac{n}{2}}(b)^{\frac{n}{2}}=(\sqrt{a \cdot b})^n \\
& =[\mathrm{G} \cdot \mathrm{M} . \text { of } a \text { and } b]^{\mathrm{n}}
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
