96 Percentile in JEE Mains Rank: Marks Required, Colleges & Admission Chances

Geometric Mean In GP - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Geometric Mean is considered one of the most asked concept.

  • 25 Questions around this concept.

Solve by difficulty

 Let G be the geometric mean of two positive numbers a and b, and M be the arithmetic mean of  \frac{1}{a}  and \frac{1}{b}

if \frac{1}{M}:G  is 4:5 then a:b can be:

For any three positive real numbers a, b and c, 9(25a2+b2)+25(c2−3ac)=15b(3a+c). Then:

Find the geometric mean of the following 7 data :

$
7,2,3,9,4,3,11
$
 

Find the geometric mean of the following observations

$
2,7,9,14
$
 

Find the correct G.M of the following :

x 2 3 4 5
f 2 1 3 2

 

If $d_1, d_2$ are two $\mathbf{G M s}$ between two numbers x and y then

$
\frac{d 1^2}{d_2}+\frac{d 2^2}{d_1} \text { is equal to }
$
 

If a,b, c are in G.P and $a^x=b^y=c^z$ then

 

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Extended Application Deadline: 30th Jan

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements | Last Date to Apply: 25th Feb

Let three real numbers a, b, c be in arithmetic progression and a+1, b, c+3 be in geometric progression. If a>10 and the arithmetic mean of a, b and c is 8 , then the cube of the geometric mean of a, b and c is

The arithmetic means and the geometric mean of two distinct 2-digit numbers $x$ and $y$ are two integers one of which can be obtained by reversing the digits of the other (in base 10 representation). Then $x+y$ equals

JEE Main Exam's High Scoring Chapters and Topics
This free eBook covers JEE Main important chapters & topics to study just 40% of the syllabus and score up to 100% marks in the examination.
Download EBook

Concepts Covered - 2

Geometric Mean

If three terms are in G.P., then the middle term is called the Geometric Mean (G.M.) of the other two numbers. So if, a, b and c are in G.P., then b is GM of a and c, If $a_1, a_2, a_3, \ldots ., a_n$ are $n$ positive numbers, then the Geometric Mean of these numbers is given by $G=\sqrt[n]{a_1 \cdot a_2 \cdot a_3 \cdot \ldots \ldots \cdot a_n}$.

If $a$ and $b$ are two numbers and $G$ is the GM of $a$ and $b$. Then, $a, G, b$ are in geometric progression.
Hence, $G=\sqrt{a \cdot b}$.

Insertion of $\mathbf{n}$-Geometric Mean Between $\mathbf{a}$ and $\mathbf{b}$
Let $\mathrm{G}_1, \mathrm{G}_2, \mathrm{G}_3 \ldots, \mathrm{G}_{\mathrm{n}}$ be n geometric mean between two numbers a and b . Then, $a, \mathrm{G}_1, \mathrm{G}_2, \mathrm{G}_3 \ldots, \mathrm{G}_{\mathrm{n}}, b_{\text {is an }}$. P . Clearly, this $\mathrm{G} . \mathrm{P}$. contains $\mathrm{n}+2$ terms. now, $b=(\mathrm{n}+2)^{\mathrm{th}}$ term $=\operatorname{ar}^{\mathrm{n}+2-1}$

$
\therefore r=\left(\frac{b}{a}\right)^{\frac{1}{n+1}}
$

[where, $\mathrm{r}=$ common ratio]

$
\begin{aligned}
& \therefore \mathrm{G}_1=\mathrm{ar}, \mathrm{G}_2=\mathrm{ar}^2, \mathrm{G}_3=\mathrm{ar}^3, \ldots, \mathrm{Ga}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}} \\
& \Rightarrow \mathrm{G}_1=\mathrm{a}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)^{\frac{1}{\mathrm{n}+1}}, \mathrm{G}_2=\mathrm{a}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)^{\frac{2}{\mathrm{n}+1}}, \mathrm{G}_3=\mathrm{a}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)^{\frac{3}{\mathrm{n}+1}} \ldots \ldots
\end{aligned}
$

$\mathrm{G}_{\mathrm{n}}=\mathrm{a}\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{\frac{\mathrm{n}}{\mathrm{n}+1}}$

Important Property of GM

Important Property of GM
The product of $n$ geometric mean between $a$ and $b$ is equal to the $\mathrm{n}^{\text {th }}$ power of a single geometric mean between $a$ and $b$.
If $a$ and b are two numbers and $\mathrm{G}_1, \mathrm{G}_2, \mathrm{G}_3 \ldots, \mathrm{G}_{\mathrm{n}}$ are n-geometric mean between a and b , then $a, \mathrm{G}_1, \mathrm{G}_2, \mathrm{G}_3 \ldots, \mathrm{G}_{\mathrm{n}}, b$ will be in geometric progression.
So, Product of n-G.M's between $a$ and $b$ is

$
\begin{aligned}
& \mathrm{G}_1 \cdot \mathrm{G}_2 \cdot \mathrm{G}_3 \cdot \ldots \cdot \mathrm{G}_{\mathrm{n}}=(a r)\left(a r^2\right)\left(a r^3\right) \ldots\left(a r^n\right) \\
& \Rightarrow\left(a^{1+1+1+\ldots \mathrm{n}-\mathrm{times}}\right)\left(r^{1+2+3+\ldots+n}\right) \\
& \Rightarrow a^n\left(r^{\left.\left(\frac{n(n+1)}{2}\right)\right)} \quad\left(1+2+\ldots . .+n=\frac{n(n+1)}{2} U \text { sing sum of } A P\right)\right. \\
& \text { replace } r \text { with }\left(\frac{\mathrm{b}}{\mathrm{a}}\right)^{\left(\frac{1}{\mathrm{n}+1}\right)} \\
& \Rightarrow a^n \cdot\left[\left(\frac{b}{a}\right)^{\frac{1}{n+1}}\right]^{\frac{n(n+1)}{2}}=a^n\left(\frac{b}{a}\right)^{\frac{n}{2}} \\
& \Rightarrow(a)^{\frac{n}{2}}(b)^{\frac{n}{2}}=(\sqrt{a \cdot b})^n \\
& =[\mathrm{G} \cdot \mathrm{M} . \text { of } a \text { and } b]^{\mathrm{n}}
\end{aligned}
$
 

Study it with Videos

Geometric Mean
Important Property of GM

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Geometric Mean

Mathematics for Joint Entrance Examination JEE (Advanced) : Algebra

Page No. : 5.12

Line : 27

Important Property of GM

Mathematics for Joint Entrance Examination JEE (Advanced) : Algebra

Page No. : 5.12

Line : 39

E-books & Sample Papers

Get Answer to all your questions

Back to top