Careers360 Logo
NIRF Ranking 2024 (Out) - List of Top Engineering Colleges in India

Sum of n Terms of an AP - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Sum of n terms of an AP is considered one the most difficult concept.

  • 46 Questions around this concept.

Solve by difficulty

Let \; a_{1},a_{2},a_{3},.... be terms of an A.P. If \frac{a_{1}+a_{2}+......+a_{p}}{a_{1}+a_{2}+......+a_{q}}=\frac{p^{2}}{q^{2}},p\neq q,  then \; \frac{a_{6}}{a_{21}}\; equals:

Concepts Covered - 1

Sum of n terms of an AP

The sum, Sn  of n terms of an AP with the first term ‘a’ and common difference ‘d’ is given by  

\begin{array}{l}{S_{n}=\frac{n}{2}[2 a+(n-1) d]} \\ {\text { OR }} \\ {S_{n}=\frac{n}{2}[a+l]} \\ {a \rightarrow \text { first term }} \\ {d \rightarrow \text { common difference }} \\ {n \rightarrow \text { number of terms }}\end{array}

 

\\\begin{array}{l}{S_{n}=a+(a+d)+(a+2 d)+\ldots . .+(a+(n-2) d)+(a+(n-1) d) \ldots \ldots .(i)} \\ {\text {Rewrite}} \\ {S_{n}=(a+(n-1) d)+(a+(n-2) d)+\ldots \ldots \ldots+(a-2 d)+(a-d)+a \ldots \ldots(i i)} \\ {(i)+(i i)}\end{array}\\\begin{array}{l}{2 S_{n}=(2 a+(n-1) d)+(2 a+(n-1) d+\ldots \ldots \ldots \ldots . . . . \text { upto } n \text { term }} \\ {S_{n}=\frac{n}{2}[(2 a+(n-1) d)]}\end{array}\\\begin{array}{l}{\text {Also, } a+(n-1) d=l=\text {last term}} \\ {\text {we can also write }} \\ {S_{n}=\frac{n}{2}[a+a+(n-1) d]=\frac{n}{2}[a+l]}\end{array}

Study it with Videos

Sum of n terms of an AP

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top