Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
15 Questions around this concept.
A solid sphere, a hollow sphere and a ring are released from the top of an inclined plane ( (frictionless ) so that they slide down the plane. Then maximum acceleration down the plane is for (no rolling)
A ring rolls down on an inclined plane of inclination $\theta$ what is the acceleration as the ring reaches the bottom
Two disc with same mass but different radii are moving with same K.E. One of them rolls and other slides without friction. Then
New: JEE Main 2025 Admit Card OUT; Download Now
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Free Crash Course
When a body of mass m and radius R rolls down an inclined plane having an angle of inclination $(\theta)$ and at height ' h '
Kinetic energy-
The total kinetic energy of the body is the sum of both translational and rotational kinetic energy.
$
K_{n e t}=K_T+K_R=\frac{1}{2} m V^2+\frac{1}{2} I \omega^2
$
Using $V=\omega R$ and $I=m K^2$
$
K_{n e t}=K_T+K_R=\frac{1}{2} m V^2\left(1+\frac{K^2}{R^2}\right)
$
2. Net Velocity at a point-
$
\vec{V}_{\text {net }}=\vec{V}_{\text {translation }}+\vec{V}_{\text {rotation }}
$
Where, $\vec{V}_{r o t}=r w$
By conservation of mechanical energy
$
m g h=\frac{1}{2} m V^2\left(1+\frac{K^2}{R^2}\right)
$
Where $\mathrm{V}=$ Velocity at the lowest point
$
\text { And, }^V=\sqrt{\frac{2 g h}{1+\frac{K^2}{R^2}}}
$
Similarly using $\quad V^2=u^2+2 a s$
$
\text { Acceleration }=a=\frac{g \sin \Theta}{1+\frac{K^2}{R^2}}
$
And angular acceleration $=a=R \alpha$
And we know that $\tau=I \alpha$
And torque due to friction force $=\tau_f=f R=I \alpha=m K^2(R a)$
So, $f=\frac{m g \sin \Theta}{1+\frac{R^2}{K^2}}$
As $f=\mu N=\mu m g \cos \theta$
So Condition for pure rolling on an inclined plane
$
\mu_s \geq \frac{\tan \Theta}{1+\frac{R^2}{K^2}}
$
Where $\mu_s=$ limiting coefficient of friction
And let $t=$ time taken by the body to reach the lowest point
So using $V=u+a t$
We get,
$
\mathrm{t}=\frac{1}{\sin \theta} \sqrt{\frac{2 \mathrm{~h}}{\mathrm{~g}}\left(1+\left[\frac{\mathrm{K}^2}{\mathrm{R}^2}\right]\right)}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"