How Much Percentile in JEE Main is Required For NIT BTech Admission

Centre Of Mass Of Semicircular Ring - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 3 Questions around this concept.

Concepts Covered - 1

Position of centre of mass for semicircular ring

Have a look at the figure of semicircular ring.

 

Since it is symmetrical about y-axis on both sides of the origin

So we can say that  its x_{cm} = 0

And its z_{cm} = 0 as  z-coordinate is zero for all particles of semicircular ring.

Now, we will calculate its y_{cm} which is given by

y_{cm} = \frac{\int y.dm}{\int dm}

So , Take a small elemental arc of mass dm at an angle \theta  from the x-direction.

Its angular width d\theta 

If the radius of the ring is R then its y coordinate will be Rsin\theta

So,  dm=\frac{M}{\pi R}*Rd\theta =\frac{M}{\pi }d\theta

As,  y_{cm} = \frac{\int y.dm}{\int dm}

So, y_{cm}=\frac{\int_{0 }^{\pi}\frac{M}{\pi R}\times R\times Rsin\theta d\theta}{M}=\frac{R}{\pi }\int_{0 }^{\pi}sin\theta d\theta=\frac{2R}{\pi }

 

Study it with Videos

Position of centre of mass for semicircular ring

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top