GNA University B.Tech Admissions 2025
100% Placement Assistance | Avail Merit Scholarships | Highest CTC 43 LPA
Rectangular Hyperbola is considered one of the most asked concept.
44 Questions around this concept.
The point of intersection of the curves whose parametric equations are and
, is given by
and
are the eccentricities of the hyperbolas
and
, then
A circle cuts rectangular hyperbola xy = 1 in the points then
JEE Main 2025: College Predictor | Marks vs Percentile vs Rank
New: JEE Seat Matrix- IITs, NITs, IIITs and GFTI | NITs Cutoff
Don't Miss: Best Public Engineering Colleges
The foci of the ellipse and the hyperbola
coincide, then the value of
is
The eccentricity of the hyperbola whose latus-rectum is 8 and conjugate axis is equal to half the distance between the foci, is
The equation of the hyperbola with vertices (3, 0) and (−3, 0) and semi latus rectum 4, is given by
A tangent drawn to the hyperbola at
forms a triangle of area
sq. units with coordinate axes. The eccentricity of the hyperbola is equal to:
If PQ is a double ordinate of hyperbola $\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ such that CPQ is an equilateral triangle, C being the centre of the hyperbola. Then the eccentricity e of the hyperbola satisfies
The equation of the hyperbola whose foci are and
and eccentricity
is given by
If a circle cuts a rectangular hyperbola and the parameters of these four points be
respectively. Then
Rectangular Hyperbola
If the length of the transverse axis and the conjugate axis are equal (i.e. $\mathrm{a}=\mathrm{b}$ ) then the hyperbola is known as rectangular hyperbola or equilateral hyperbola.
$
\mathrm{a}=\mathrm{b}
$
So, $\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ becomes $\mathrm{x}^2-\mathrm{y}^2=\mathrm{a}^2$
This is the general equation of a rectangular hyperbola.
Rectangular Hyperbola $x y=c^2$
If we rotate the coordinate axes by $45^{\circ}$ keeping the origin fixed, then the axes coincide with lines $y=x$ and $y=-x$
Using rotation, the equation $x^2-y^2=a^2$ reduces to
$x y=\frac{a^2}{2}$
$\Rightarrow x y=c^2$
For rectangular hyperbola, xy = c2
1. Vertices: $A(c, c)$ and $A^{\prime}(-c,-c)$
2. Transverse axis: $x=y$
3. Conjugate axis: $x=-y$
4. Foci: $\mathrm{S}(c \sqrt{2}, c \sqrt{2})$ and $\mathrm{S}^{\prime}(-c \sqrt{2},-c \sqrt{2})$
5. Directrices: $x+y=\sqrt{2}, x+y=-\sqrt{2}$
6. Length of latusrectum $=A A^{\prime}=2 \sqrt{2} c$
Properties of rectangular Hyperbola:
(i) The parametric equation of the rectangular hyperbola $x y=c^2$ are $\mathrm{x}=\mathrm{ct}$ and $\mathrm{y}=\frac{\mathrm{c}}{\mathrm{t}}$.
(ii) The equation of the tangent to the rectangular hyperbola $\mathrm{xy}=\mathrm{c}^2$ at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\mathrm{xy}_1+\mathrm{x}_1 \mathrm{y}=2 \mathrm{c}^2$.
(iii) The equation of the tangent at $\left(\mathrm{ct}, \frac{\mathrm{c}}{\mathrm{t}}\right)$ to the hyperbola $\mathrm{xy}=\mathrm{c}^2$ is $\frac{\mathrm{x}}{\mathrm{t}}+\mathrm{yt}=2 \mathrm{c}$.
(iv) The equation of the normal at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to the hyperbola $\mathrm{xy}=\mathrm{c}^2$ is $\mathrm{xx}_1-\mathrm{yy}_1=\mathrm{x}_1^2-\mathrm{y}_1^2$.
(v) The equation of the normal at $t$ to the hyperbola $\mathrm{xy}=\mathrm{c}^2$ is $\mathrm{xt}^3-\mathrm{yt}-\mathrm{ct}^4+\mathrm{c}=0$.
"Stay in the loop. Receive exam news, study resources, and expert advice!"