What JEE Rank Is Required To Get Into IISc

Rectangular Hyperbola - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Rectangular Hyperbola is considered one of the most asked concept.

  • 36 Questions around this concept.

Solve by difficulty

The point of intersection of the curves whose parametric equations are \mathrm{x=t^{2}+1, y=2 t} and \mathrm{x}=2 \mathrm{~s}, \mathrm{y}=2 / \mathrm{s}, is given by

\mathrm{e_{1}} and \mathrm{e_{2}} are the eccentricities of the hyperbolas \mathrm{x y=c^{2}} and \mathrm{x^{2}-y^{2}=c^{2}}, then \mathrm{e_{1}^{2}+e_{2}^{2}=}

A circle cuts rectangular hyperbola xy = 1 in the points \mathrm{\left(x_r, y_r\right), r=1,2,3,4 \text {, }}  then 

 

The foci of the ellipse \mathrm{\frac{x^2}{16}+\frac{y^2}{b^2}=1} and the hyperbola \mathrm{\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}} coincide, then the value of \mathrm{b^2} is

The eccentricity of the hyperbola whose latus-rectum is 8 and conjugate axis is equal to half the distance between the foci, is 

 

The equation of the hyperbola with vertices (3, 0) and (−3, 0) and semi latus rectum 4, is given by

A tangent drawn to the hyperbola \mathrm{\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 } at \mathrm{ \quad P\left(\frac{\pi}{6}\right)} forms a triangle of area \mathrm{3 a^2 } sq. units with coordinate axes. The eccentricity of the hyperbola is equal to:

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships

If \mathrm{PQ} is a double ordinate of hyperbola \mathrm{\frac{x^2}{a^2}-\frac{y^2}{b^2}=1} such that \mathrm{CPQ} is an equilateral triangle, \mathrm{C} being the centre of the hyperbola.  Then the eccentricity e of the hyperbola satisfies

The equation of the hyperbola whose foci are (6, 4) and (- 4, 4) and eccentricity 2 is given by

JEE Main Exam's High Scoring Chapters and Topics
This free eBook covers JEE Main important chapters & topics to study just 40% of the syllabus and score up to 100% marks in the examination.
Download EBook

If a circle cuts a rectangular hyperbola \mathrm{x y=c^2 \text { in } A, B, C, D} and the parameters of these four points be \mathrm{t_1, t_2, t_3 \text { and } t_4} respectively. Then

Concepts Covered - 2

Rectangular Hyperbola

Rectangular Hyperbola

If the length of the transverse axis and the conjugate axis are equal (i.e. a = b) then the hyperbola is known as rectangular hyperbola or equilateral hyperbola.

\\\mathrm{a}=\mathrm{b} \\\\ {So,\frac{\mathrm{x}^{2}}{\mathrm{a}^{2}}-\frac{\mathrm{y}^{2}}{\mathrm{b}^{2}}=1 \text { becomes } \mathrm{x}^{2}-\mathrm{y}^{2}=\mathrm{a}^{2}}

This is the general equation of a rectangular hyperbola.

 

Rectangular Hyperbola xy = c2

If we rotate the coordinate axes by 45o keeping the origin fixed, then the axes coincide with lines y = x and y = -x

\\\text{Using rotation, the equation } x^{2}-y^{2}=a^{2} \text { reduces to } \\ x y=\frac{a^{2}}{2}\\\\\Rightarrow xy = c^2

Properties of rectangular Hyperbola

For rectangular hyperbola, xy = c2

  1. 1. Vertices: $A(c, c)$ and $A^{\prime}(-c,-c)$
    2. Transverse axis: $x=y$
    3. Conjugate axis: $x=-y$
    4. Foci: $\mathrm{S}(c \sqrt{2}, c \sqrt{2})$ and $\mathrm{S}^{\prime}(-c \sqrt{2},-c \sqrt{2})$
    5. Directrices: $x+y=\sqrt{2}, x+y=-\sqrt{2}$
    6. Length of latusrectum $=A A^{\prime}=2 \sqrt{2} c$

Properties of rectangular Hyperbola:
(i) The parametric equation of the rectangular hyperbola $x y=c^2$ are $\mathrm{x}=\mathrm{ct}$ and $\mathrm{y}=\frac{\mathrm{c}}{\mathrm{t}}$.
(ii) The equation of the tangent to the rectangular hyperbola $\mathrm{xy}=\mathrm{c}^2$ at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\mathrm{xy}_1+\mathrm{x}_1 \mathrm{y}=2 \mathrm{c}^2$.
(iii) The equation of the tangent at $\left(\mathrm{ct}, \frac{\mathrm{c}}{\mathrm{t}}\right)$ to the hyperbola $\mathrm{xy}=\mathrm{c}^2$ is $\frac{\mathrm{x}}{\mathrm{t}}+\mathrm{yt}=2 \mathrm{c}$.
(iv) The equation of the normal at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to the hyperbola $\mathrm{xy}=\mathrm{c}^2$ is $\mathrm{xx}_1-\mathrm{yy}_1=\mathrm{x}_1^2-\mathrm{y}_1^2$.
(v) The equation of the normal at $t$ to the hyperbola $\mathrm{xy}=\mathrm{c}^2$ is $\mathrm{xt}^3-\mathrm{yt}-\mathrm{ct}^4+\mathrm{c}=0$.

 

Study it with Videos

Rectangular Hyperbola
Properties of rectangular Hyperbola

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top