JEE Mains 2026 Registration Date Session 1: Apply Online, Schedule & Details

Rectangular Hyperbola - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Rectangular Hyperbola is considered one of the most asked concept.

  • 44 Questions around this concept.

Solve by difficulty

The point of intersection of the curves whose parametric equations are \mathrm{x=t^{2}+1, y=2 t} and \mathrm{x}=2 \mathrm{~s}, \mathrm{y}=2 / \mathrm{s}, is given by

\mathrm{e_{1}} and \mathrm{e_{2}} are the eccentricities of the hyperbolas \mathrm{x y=c^{2}} and \mathrm{x^{2}-y^{2}=c^{2}}, then \mathrm{e_{1}^{2}+e_{2}^{2}=}

A circle cuts rectangular hyperbola xy = 1 in the points \mathrm{\left(x_r, y_r\right), r=1,2,3,4 \text {, }}  then 

 

The foci of the ellipse \mathrm{\frac{x^2}{16}+\frac{y^2}{b^2}=1} and the hyperbola \mathrm{\frac{x^2}{144}-\frac{y^2}{81}=\frac{1}{25}} coincide, then the value of \mathrm{b^2} is

The eccentricity of the hyperbola whose latus-rectum is 8 and conjugate axis is equal to half the distance between the foci, is 

 

The equation of the hyperbola with vertices (3, 0) and (−3, 0) and semi latus rectum 4, is given by

A tangent drawn to the hyperbola \mathrm{\frac{x^2}{a^2}-\frac{y^2}{b^2}=1 } at \mathrm{ \quad P\left(\frac{\pi}{6}\right)} forms a triangle of area \mathrm{3 a^2 } sq. units with coordinate axes. The eccentricity of the hyperbola is equal to:

GNA University B.Tech Admissions 2025

100% Placement Assistance | Avail Merit Scholarships | Highest CTC 43 LPA

Jain University B.Tech Admissions 2025

100% Placement Record | Highest CTC 54 LPA | NAAC A++ Accredited | Ranked #65 in India by NIRF Ranking 2024 | JEE & JET Scores Accepted

If PQ is a double ordinate of hyperbola $\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ such that CPQ is an equilateral triangle, C being the centre of the hyperbola. Then the eccentricity e of the hyperbola satisfies

The equation of the hyperbola whose foci are (6, 4) and (- 4, 4) and eccentricity 2 is given by

JEE Main 2026: Preparation Tips & Study Plan
Download the JEE Main 2026 Preparation Tips PDF to boost your exam strategy. Get expert insights on managing study material, focusing on key topics and high-weightage chapters.
Download EBook

If a circle cuts a rectangular hyperbola \mathrm{x y=c^2 \text { in } A, B, C, D} and the parameters of these four points be \mathrm{t_1, t_2, t_3 \text { and } t_4} respectively. Then

Concepts Covered - 2

Rectangular Hyperbola

Rectangular Hyperbola

If the length of the transverse axis and the conjugate axis are equal (i.e. $\mathrm{a}=\mathrm{b}$ ) then the hyperbola is known as rectangular hyperbola or equilateral hyperbola.

$
\mathrm{a}=\mathrm{b}
$

So, $\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ becomes $\mathrm{x}^2-\mathrm{y}^2=\mathrm{a}^2$
This is the general equation of a rectangular hyperbola.

Rectangular Hyperbola $x y=c^2$
If we rotate the coordinate axes by $45^{\circ}$ keeping the origin fixed, then the axes coincide with lines $y=x$ and $y=-x$
Using rotation, the equation $x^2-y^2=a^2$ reduces to
$x y=\frac{a^2}{2}$
$\Rightarrow x y=c^2$

Properties of rectangular Hyperbola

For rectangular hyperbola, xy = c2

  1. 1. Vertices: $A(c, c)$ and $A^{\prime}(-c,-c)$
    2. Transverse axis: $x=y$
    3. Conjugate axis: $x=-y$
    4. Foci: $\mathrm{S}(c \sqrt{2}, c \sqrt{2})$ and $\mathrm{S}^{\prime}(-c \sqrt{2},-c \sqrt{2})$
    5. Directrices: $x+y=\sqrt{2}, x+y=-\sqrt{2}$
    6. Length of latusrectum $=A A^{\prime}=2 \sqrt{2} c$

Properties of rectangular Hyperbola:
(i) The parametric equation of the rectangular hyperbola $x y=c^2$ are $\mathrm{x}=\mathrm{ct}$ and $\mathrm{y}=\frac{\mathrm{c}}{\mathrm{t}}$.
(ii) The equation of the tangent to the rectangular hyperbola $\mathrm{xy}=\mathrm{c}^2$ at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\mathrm{xy}_1+\mathrm{x}_1 \mathrm{y}=2 \mathrm{c}^2$.
(iii) The equation of the tangent at $\left(\mathrm{ct}, \frac{\mathrm{c}}{\mathrm{t}}\right)$ to the hyperbola $\mathrm{xy}=\mathrm{c}^2$ is $\frac{\mathrm{x}}{\mathrm{t}}+\mathrm{yt}=2 \mathrm{c}$.
(iv) The equation of the normal at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to the hyperbola $\mathrm{xy}=\mathrm{c}^2$ is $\mathrm{xx}_1-\mathrm{yy}_1=\mathrm{x}_1^2-\mathrm{y}_1^2$.
(v) The equation of the normal at $t$ to the hyperbola $\mathrm{xy}=\mathrm{c}^2$ is $\mathrm{xt}^3-\mathrm{yt}-\mathrm{ct}^4+\mathrm{c}=0$.

 

Study it with Videos

Rectangular Hyperbola
Properties of rectangular Hyperbola

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions