NIT Jamshedpur Seat Matrix 2024 - Check Previous Year Matrix here

Radical Axis - Practice Questions & MCQ

Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 18 Questions around this concept.

Solve by difficulty

If the circumference of the circle \mathrm{x^2+y^2+8 x+8 y-b=0} is bisected by the circle \mathrm{x^2+y^2-2 x+4 y+a=0}, then \mathrm{a+b=}

 

The equation of the radical axis of the two circles \mathrm{7 x^2+7 y^2-7 x+14 y+18=0} and \mathrm{4 x^2+4 y^2-7 x+8 y+20=0} is given by
 

The equation of a circle which passes through (2 \mathrm{a}, 0) and whose radical axis in relation to the circle \mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{a}^{2} is \mathrm{x}=\mathrm{a} / 2, is

The gradient of the radical axis of the circles $\mathrm{x}^2+\mathrm{y}^2-3 \mathrm{x}-4 \mathrm{y}+5=0$ and $3 \mathrm{x}^2+3 \mathrm{y}^2-7 \mathrm{x}+8 \mathrm{y}+11=0$ is:

The equation of the circle, which passes through the point $(2 \mathrm{a}, 0)$ and whose radical axis is $\mathrm{x}=\frac{\mathrm{a}}{2}$ with respect to the circle $\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2$, will be:

The radical axis of the two distinct circles x2 + y2 + 2gx + 2fy + c = 0 and 2x2 + 2y2 + 4x + y + 2c = 0 touches the circle x2 + y2 4x 4y + 4 = 0. Then the centre of the circle x2 + y2 + 2gx + 2fy + c = 0 can be

Concepts Covered - 1

Radical Axis

Radical Axis

The radical axis of two circles is the locus of a point which moves in a plane in such a way that the lengths of the tangents drawn from it to the two circles are the same.
Consider the two circles:

$
\begin{aligned}
& S_1: x^2+y^2+2 g_1 x+2 f_1 y+c_1=0 \\
& S_2: x^2+y^2+2 g_2 x+2 f_2 y+c_2=0
\end{aligned}
$

Let point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ such that

$
|\mathrm{PA}|=|\mathrm{PB}|
$

The length of the tangent from a point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to circle S is $\sqrt{S_1}$

$
\Rightarrow \sqrt{x_1^2+y_1^2+2 g_1 x_1+2 f_1 y_1+c_1}=\sqrt{x_1^2+y_1^2+2 g_2 x_1+2 f_2 y_1+c_2}
$
Square both sides, and we get

$
\begin{aligned}
& \Rightarrow \mathrm{x}_1^2+\mathrm{y}_1^2+2 \mathrm{~g}_1 \mathrm{x}_1+2 \mathrm{f}_1 \mathrm{y}_1+\mathrm{c}_1=\mathrm{x}_1^2+\mathrm{y}_1^2+2 \mathrm{~g}_2 \mathrm{x}_1+2 \mathrm{f}_2 \mathrm{y}_1+\mathrm{c}_2 \\
& \Rightarrow 2 \mathrm{x}_1\left(\mathrm{~g}_1-\mathrm{g}_2\right)+2 \mathrm{y}_1\left(\mathrm{f}_1-\mathrm{f}_2\right)+\mathrm{c}_1-\mathrm{c}_2=0
\end{aligned}
$

This is the required equation of the radical axis.

Study it with Videos

Radical Axis

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Radical Axis

Mathematics for Joint Entrance Examination JEE (Advanced) : Coordinate Geometry

Page No. : 4.30

Line : 53

E-books & Sample Papers

Get Answer to all your questions

Back to top