UPES B.Tech Admissions 2025
ApplyRanked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 30th July | Limited seats available in select program
9 Questions around this concept.
There are exactly two points on the ellipse whose distance from its centre is same and is equal to
Find the eccentricity of the ellipse.
If a point moves along the ellipse
and if
is the center of the ellipse, then,
Let $e_1$ be the eccentricity of the hyperbola $\frac{x^2}{16}-\frac{y^2}{9}=1$ and $e_2$ be the eccentricity of the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>$ b, which passes through the foci of the hyperbola. If $\mathrm{e}_1 \mathrm{e}_2=1$, then the length of the chord of the ellipse parallel to the $\mathrm{x}$-axis and passing through $(0,2)$ is :
Match the following regarding the position of a point concerning the eclipse: $9 x^2+25 y^2=225$
Point lies
(0,2) (p) Inside
(5,0) (q) Outside
(5,3) (r) on
(-3,5) (s) can't say
Find the set of possible value of $\alpha$ for which point $P(\alpha, 3 \alpha)$ lies on the smaller region of the ellipse $9 x^2+16 y^2=144$ divided by the line $3 x+4 y=12$
Find the set of those values(s) of ' $\alpha$ ' for which the point $(\alpha, \alpha)$ lies inside the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$.
Position of a point with respect to Ellipse
P(x1,y1) is any point in the plane
Then,
a) P lies outside of the ellipse, then $\frac{x^2}{a^2}+\frac{y^2}{b^2}-1>0$
(b) P lies on of the ellipse, then $\frac{x^2}{a^2}+\frac{y^2}{b^2}-1=0$
(c) P lies inside of the ellipse, then $\frac{x^2}{a^2}+\frac{y^2}{b^2}-1<0$
Consider the figure, Point $Q\left(x_1, y_2\right)$ lying on the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$
then,
$
\begin{array}{ll}
& \frac{\mathrm{x}_1^2}{\mathrm{a}_2}+\frac{\mathrm{y}_2^2}{\mathrm{~b}^2}=1 \\
\Rightarrow \quad & \frac{\mathrm{y}_2^2}{\mathrm{~b}^2}=1-\frac{\mathrm{x}_1^2}{\mathrm{a}_2}
\end{array}
$
Now, point P lies outside the ellipse, on the ellipse or inside the ellipse according as
$
\begin{array}{ll}
& \text { PM }>,=\text { or }<\mathrm{PQ} \\
\Rightarrow & \mathrm{y}_1>,=\text { or }<\mathrm{y}_2 \\
\Rightarrow & \frac{\mathrm{y}_1^2}{\mathrm{~b}^2}>=\text { or }<\frac{\mathrm{y}_2^2}{\mathrm{~b}^2} \\
\Rightarrow & \frac{\mathrm{y}_1^2}{\mathrm{~b}^2}>=\text { or }<1-\frac{\mathrm{x}_1^2}{\mathrm{a}^2} \quad \text { [From eq (1)] } \\
\Rightarrow & \frac{\mathrm{x}_1^2}{\mathrm{x}^2}+\frac{\mathrm{y}_1^2}{\mathrm{~b}^2}>,=\text { or }<1 \\
\Rightarrow & \frac{\mathrm{x}_1^2}{\mathrm{x}^2}+\frac{\mathrm{y}_1^2}{\mathrm{~b}^2}-1>,=\text { or }<0
\end{array}
$
As Point P(x1, y1) lies outside, on or inside the ellipse according to $\frac{\mathrm{x}_1^2}{\mathrm{a}^2}+\frac{\mathrm{y}_1^2}{\mathrm{~b}^2}-1>$, or $<0$.
"Stay in the loop. Receive exam news, study resources, and expert advice!"