Download Careers360 App
NIRF Engineering Ranking 2025: Complete List of Top Colleges

Position of a point with respect to Ellipse - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 9 Questions around this concept.

Solve by difficulty

There are exactly two points on the ellipse \mathrm{\frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1} whose distance from its centre is same and is equal to\mathrm{\sqrt{\frac{a^2+2 b^2}{2}} .} Find the eccentricity of the ellipse.

If a point \mathrm {P(x, y)}  moves along the ellipse  \mathrm {\frac{x^2}{25}+\frac{y^2}{16}=1} and if  \mathrm {C} is the center of the ellipse, then, \mathrm {4 \max \{C P\}+5 \min \{C P\}=}

Let $e_1$ be the eccentricity of the hyperbola $\frac{x^2}{16}-\frac{y^2}{9}=1$ and $e_2$ be the eccentricity of the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>$ b, which passes through the foci of the hyperbola. If $\mathrm{e}_1 \mathrm{e}_2=1$, then the length of the chord of the ellipse parallel to the $\mathrm{x}$-axis and passing through $(0,2)$ is :

Match the following regarding the position of a point concerning the eclipse: $9 x^2+25 y^2=225$

Point                     lies 

(0,2)                    (p) Inside 

(5,0)                     (q) Outside 

(5,3)                      (r) on 

(-3,5)                    (s)  can't say  

Find the set of possible value of $\alpha$ for which point $P(\alpha, 3 \alpha)$ lies on the smaller region of the ellipse $9 x^2+16 y^2=144$ divided by the line $3 x+4 y=12$

Find the set of those values(s) of ' $\alpha$ ' for which the point $(\alpha, \alpha)$ lies inside the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$.

Concepts Covered - 1

Position of a point with respect to Ellipse

Position of a point with respect to Ellipse

P(x1,y1) is any point in the plane

Then,

a) P lies outside of the ellipse, then $\frac{x^2}{a^2}+\frac{y^2}{b^2}-1>0$
(b) P lies on of the ellipse, then $\frac{x^2}{a^2}+\frac{y^2}{b^2}-1=0$
(c) P lies inside of the ellipse, then $\frac{x^2}{a^2}+\frac{y^2}{b^2}-1<0$

Consider the figure, Point $Q\left(x_1, y_2\right)$ lying on the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$
then,

$
\begin{array}{ll} 
& \frac{\mathrm{x}_1^2}{\mathrm{a}_2}+\frac{\mathrm{y}_2^2}{\mathrm{~b}^2}=1 \\
\Rightarrow \quad & \frac{\mathrm{y}_2^2}{\mathrm{~b}^2}=1-\frac{\mathrm{x}_1^2}{\mathrm{a}_2}
\end{array}
$
Now, point P lies outside the ellipse, on the ellipse or inside the ellipse according as

$
\begin{array}{ll} 
& \text { PM }>,=\text { or }<\mathrm{PQ} \\
\Rightarrow & \mathrm{y}_1>,=\text { or }<\mathrm{y}_2 \\
\Rightarrow & \frac{\mathrm{y}_1^2}{\mathrm{~b}^2}>=\text { or }<\frac{\mathrm{y}_2^2}{\mathrm{~b}^2} \\
\Rightarrow & \frac{\mathrm{y}_1^2}{\mathrm{~b}^2}>=\text { or }<1-\frac{\mathrm{x}_1^2}{\mathrm{a}^2} \quad \text { [From eq (1)] } \\
\Rightarrow & \frac{\mathrm{x}_1^2}{\mathrm{x}^2}+\frac{\mathrm{y}_1^2}{\mathrm{~b}^2}>,=\text { or }<1 \\
\Rightarrow & \frac{\mathrm{x}_1^2}{\mathrm{x}^2}+\frac{\mathrm{y}_1^2}{\mathrm{~b}^2}-1>,=\text { or }<0
\end{array}
$

As Point P(x1, y1) lies outside, on or inside the ellipse according to  $\frac{\mathrm{x}_1^2}{\mathrm{a}^2}+\frac{\mathrm{y}_1^2}{\mathrm{~b}^2}-1>$, or $<0$.

Study it with Videos

Position of a point with respect to Ellipse

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top