Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Position of a Point With Respect to Circle is considered one of the most asked concept.
38 Questions around this concept.
If a point $P$ has co-ordinates $(0, -2)$ and $Q$ is any point on the circle, x2 + y2 $- 4x$ $- 2y + 4$ = $0$, then the maximum value of PQ is :
If A is a point on the circle $\mathrm{x}^2+\mathrm{y}^2-4 \mathrm{x}+6 \mathrm{y}-3=0$. which is farthest from the point $(7,2)$, then
Find the parameter $\theta$ of a point $(3,-4)$ on a circle whoese center is $(2,-4+\sqrt{3})$ and radisu is 2 units
New: JEE Main 2025 Admit Card OUT; Download Now
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Free Crash Course
Position of a Point With Respect to Circle
Let $S$ be a circle and $P$ be any point in the plane. Then
$S: x^2+y^2+2 g x+2 f y+c=0$
Centre of the circle, $\mathrm{C}(-\mathrm{g},-\mathrm{f})$
To check if the point $P\left(x_1, y_1\right)$ lies outside, on or inside the circle $S$
- If $\mathrm{CP}^2-\mathrm{r}^2>0$, then CP is greater than r , which means P lies outside the circle
- If $C P^2-r^2<0$, then $C P$ is lesser than $r$, which means $P$ lies inside the circle
- If $\mathrm{CP}^2-\mathrm{r}^2=0$, then CP is equal to r , which means P lies on the circle
Let us find the equation for $\mathrm{CP}^2-\mathrm{r}^2$
$
\begin{aligned}
& \left(x_1-(-g)\right)^2+\left(y_1-(-f)\right)^2-\left(g^2+f^2-c\right) \\
& x_1^2+g^2+2 g x_1+y_1^2+f^2+2 f y_1-\left(g^2+f^2-c\right) \\
& x_1^2+y_1^2+2 g x_1+2 f y_1+c
\end{aligned}
$
This expression can also be obtained by substituing the coordinates of point P in the equation of the circle, and we call this expression $\mathrm{S}_1$
So, if
(a) P lies outside the circle $\Leftrightarrow \mathrm{S}_1>0$
(b) P lies on the circle (on the circumference) $\Leftrightarrow \mathrm{S}_1=0$
(c) P lies inside the circle $\Leftrightarrow \mathrm{S}_1<0$
Greatest and Least Distance of a Point from a Circle
$S_1$ be a circle and $P$ be any point in the plane.
$
\begin{aligned}
& S_1: x^2+y^2+2 g x+2 f y+c=0 \\
& P=\left(x_1, y_1\right)
\end{aligned}
$
The centre of circle is $\mathrm{C}(-\mathrm{g},-\mathrm{f})$ and radius r is $\sqrt{g^2+f^2-c}$
(a) If P lies inside of the circle
The minimum distance of $P$ from the circle $=P A=A C-P C=r-P C$
The maximum distance of $P$ from the circle $=P B=B C+P C=r+P C \mid$
(b) If P lies outside of the circle
The minimum distance of P from the circle $=\mathrm{PA}=\mathrm{CP}-\mathrm{AC}=\mathrm{CP}-\mathrm{r}$
The maximum distance of P from the circle $=\mathrm{PB}=\mathrm{BC}+\mathrm{PC}=\mathrm{r}+\mathrm{PC}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"