Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Point of intersection of two lines is considered one of the most asked concept.
37 Questions around this concept.
Let a, b, c and d be non-zero numbers. If the point of intersection of the lines 4ax+2ay+c=0 and 5bx+2by+d=0 lies in the fourth quadrant and is equidistant from the two axes then :
The intersection of three lines $x-y=0,x+2y=3 \; \text {and} \; 2x+y=6$ is a :
The equation of a straight line passing through the point of intersection of and and perpendicular to one of them is:
JEE Main 2025: Rank Predictor | Admit Card Link | January Session Exam Analysis
JEE Main 2025: Memory Based Question: Jan 24- Shift 1 | Jan 23- Shift 1 | Shift 2 | Jan 22- Shift 1 | Shift 2
JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs
The values of for which lines are concurrent:
The number of integer values of , for which the -coordinate of the point of intersection of the lines and is also an integer, is:
Point of intersection of two lines
If the equations of two non-parallel lines are
$
\begin{aligned}
& L_1=a_1 x+b_1 y+c_1=0 \\
& L_2=a_2 x+b_2 y+c_2=0
\end{aligned}
$
If $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is a point of intersection of $\mathrm{L}_1$ and $\mathrm{L}_2$, then solving these two equations of the line by cross multiplication
$
\frac{x_1}{b_1 c_2-c_1 b_2}=\frac{y_1}{c_1 a_2-a_1 c_2}=\frac{1}{a_1 b_2-b_1 a_2}
$
We get,
$
\left(\mathrm{x}_1, \mathrm{y}_1\right)=\left(\frac{\mathrm{b}_1 \mathrm{c}_2-\mathrm{b}_2 \mathrm{c}_1}{\mathrm{a}_1 \mathrm{~b}_2-\mathrm{a}_2 \mathrm{~b}_1}, \frac{\mathrm{c}_1 \mathrm{a}_2-\mathrm{c}_2 \mathrm{a}_1}{\mathrm{a}_1 \mathrm{~b}_2-\mathrm{a}_2 \mathrm{~b}_1}\right)
$
Concurrent Lines
If three straight lines meet in a point then three given lines are called concurrent.
To check if three lines are concurrent or not
1. First find the point of intersection of any two straight lines by solving them simultaneously. If this point satisfies the third equation then three lines are concurrent.
$
\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right|=0
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"