UPES B.Tech Admissions 2025
ApplyRanked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Point of intersection of two lines is considered one of the most asked concept.
34 Questions around this concept.
Let a, b, c and d be non-zero numbers. If the point of intersection of the lines 4ax+2ay+c=0 and 5bx+2by+d=0 lies in the fourth quadrant and is equidistant from the two axes then :
The equation of a straight line passing through the point of intersection of and and perpendicular to one of them is:
The values of for which lines are concurrent:
Also Check: Crack JEE Main 2025 - Join Our Free Crash Course Now!
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Study Plan 100 Days
The number of integer values of , for which the -coordinate of the point of intersection of the lines and is also an integer, is:
Point of intersection of two lines
If the equations of two non-parallel lines are
$
\begin{aligned}
& L_1=a_1 x+b_1 y+c_1=0 \\
& L_2=a_2 x+b_2 y+c_2=0
\end{aligned}
$
If $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is a point of intersection of $\mathrm{L}_1$ and $\mathrm{L}_2$, then solving these two equations of the line by cross multiplication
$
\frac{x_1}{b_1 c_2-c_1 b_2}=\frac{y_1}{c_1 a_2-a_1 c_2}=\frac{1}{a_1 b_2-b_1 a_2}
$
We get,
$
\left(\mathrm{x}_1, \mathrm{y}_1\right)=\left(\frac{\mathrm{b}_1 \mathrm{c}_2-\mathrm{b}_2 \mathrm{c}_1}{\mathrm{a}_1 \mathrm{~b}_2-\mathrm{a}_2 \mathrm{~b}_1}, \frac{\mathrm{c}_1 \mathrm{a}_2-\mathrm{c}_2 \mathrm{a}_1}{\mathrm{a}_1 \mathrm{~b}_2-\mathrm{a}_2 \mathrm{~b}_1}\right)
$
Concurrent Lines
If three straight lines meet in a point then three given lines are called concurrent.
To check if three lines are concurrent or not
1. First find the point of intersection of any two straight lines by solving them simultaneously. If this point satisfies the third equation then three lines are concurrent.
$
\left|\begin{array}{lll}
a_1 & b_1 & c_1 \\
a_2 & b_2 & c_2 \\
a_3 & b_3 & c_3
\end{array}\right|=0
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"