JEE Main 2026 Jan 29 Admit Card Out By NTA: Hall Ticket Link at jeemain.nta.nic.in

Perpendicular Distance Of A Point From A Plane - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Distance of a Point From a Plane is considered one the most difficult concept.

  • 38 Questions around this concept.

Solve by difficulty

 The distance of the point (1, 3, −7) from the plane passing through the point (1, −1, −1), having normal perpendicular

to both the lines \frac{x-1}{1}= \frac{y+2}{-2}= \frac{z-4}{3}  and \frac{x-2}{2}= \frac{y+1}{-1}= \frac{z+7}{-1},is:
 

If the points (1, 1, \lambda) and (-3, 0, 1) are equidistant from the plane, 3x+4y-12z+13=0, then \lambdasatisfies the equation :

Distance between two parallel planes 2x+y+2z=8\: and \: 4x+2y+4z+5=0 is :

JEE Main 2026 Ques & Sol's: Jan 24: Shift-2 | Shift-1 | Jan 23: Shift-2 | Shift-1 | All Shift

JEE Main 2026: Rank Predictor | College Predictor | Live Analysis (Jan 24- Shift 2)

JEE Main Sample Papers: Physics | Chemistry | Maths | Top 30 Repeated Questions

JEE Main QP & Mock:  PYQ's (10 Years) | Chapter Wise PYQsMock Test Series

The plane which bisects the line joining the points $(4,-2,3)$ and $(2,4,-1)$ at right angles also passes through the point :

 The distance of the point (1, −2, 4) from the plane passing through the point (1, 2, 2) and perpendicular to the planes x − y + 2z = 3 and  2x −2y + z + 12=0, is :

 

The distance of the point $A(1,-3,5)$ from the plane $x-2 y+2 z=22$ measured parallel to the line $\frac{x}{3}=\frac{y}{4}=\frac{z}{5}$ is

Find the distance of a point $(1,5,10)$ from the point of intersection of the line (x+2)/3 = (y-2)/4 = (z+2)/12  and the plane is $x-y+z = 5$

Amity University-Noida B.Tech Admissions 2026

Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026

UPES B.Tech Admissions 2026

Ranked #43 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

The distance of point P(3, 4, 5) from the yz-plane is
 

The square of the distance of the point $\left(\frac{15}{7}, \frac{32}{7}, 7\right)$ from the line $\frac{x+1}{3}=\frac{y+3}{5}=\frac{z+5}{7}$ in the direction of the vector $\hat{i}+4 \hat{j}+7 \hat{k}$ is:

JEE Main 2026 Rank Predictor
Use the JEE Main 2026 Rank Predictor to estimate your expected rank based on your scores or percentile and plan your college options smartly.
Try Now

Concepts Covered - 1

Distance of a Point From a Plane

The perpendicular distance (D) from a point having position vector $\overrightarrow{\mathbf{a}}$ to the plane $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{n}}=d$ is given by
$
\mathbf{D}=\frac{|\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}}-d|}{|\overrightarrow{\mathbf{n}}|}
$

Consider a point P with position vector $\overrightarrow{\mathbf{a}}$ and a plane $\pi_1$ whose equation is $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{n}}=d$

Let $R$ be a point in the plane such that $\overrightarrow{P R}$ is orthogonal to the plane $\pi_1$. sincel line $P R$ passes through $P(a)$ and is parallel to the vector $\overrightarrow{\mathbf{n}}$ which is normal to the plane $\pi_1$. So, the vector equation of line $P R$ is
$
\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{n}}
$

Point $R$ is the intersection of Eq. (i) and the given plane $\pi_1$.
$
\begin{array}{lc}
\therefore & (\overrightarrow{\mathbf{a}}+\lambda \overrightarrow{\mathbf{n}}) \cdot \overrightarrow{\mathbf{n}}=d \\
\Rightarrow & \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}}+\lambda \overrightarrow{\mathbf{n}} \cdot \overrightarrow{\mathbf{n}}=d \\
\Rightarrow & \lambda=\frac{d-\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}}}{|\overrightarrow{\mathbf{n}}|^2}
\end{array}
$

On putting the value of λ in Eq. (i), we obtain the position vector of R given by

$\begin{aligned} \overrightarrow{\mathbf{r}} & =\overrightarrow{\mathbf{a}}+\left(\frac{d-\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}}}{|\overrightarrow{\mathbf{n}}|^2}\right) \overrightarrow{\mathbf{n}} \\ \overrightarrow{\mathbf{P R}} & =\text { Position vector of } R-\text { Position vector of } P \\ & =\overrightarrow{\mathbf{a}}+\left(\frac{d-\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}}}{|\overrightarrow{\mathbf{n}}|^2}\right) \overrightarrow{\mathbf{n}}-\overrightarrow{\mathbf{a}} \\ \overrightarrow{\mathbf{P R}} & =\left(\frac{d-\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}}}{|\overrightarrow{\mathbf{n}}|^2}\right) \overrightarrow{\mathbf{n}} \\ \Rightarrow \quad|\overrightarrow{\mathbf{P R}}| & =\left|\left(\frac{d-\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}}}{|\overrightarrow{\mathbf{n}}|^2}\right) \overrightarrow{\mathbf{n}}\right| \\ \Rightarrow \quad|\overrightarrow{\mathbf{P R}}| & =\frac{|d-(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}})|}{|\overrightarrow{\mathbf{n}}|} \\ \text { or } \quad D & =\frac{|(\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}})-d|}{|\overrightarrow{\mathbf{n}}|}\end{aligned}$
Cartesian Form

Let P(x1, y1, z1) be the given point with position vector \vec{\mathbf a} and ax + by + cz + d = 0 be the Cartesian equation of the given plane. Then

$
\begin{aligned}
\vec{a} & =x_1 \hat{i}+y_1 \hat{j}+z_1 \hat{k} \\
\vec{n} & =\mathrm{a} \hat{i}+\mathrm{b} \hat{j}+\mathrm{c} \hat{k}
\end{aligned}
$

Hence, the Vector form of the perpendicular from P to the plane is
$
\left|\frac{\left(x_1 \hat{i}+y_1 \hat{j}+z_1 \hat{k}\right) \cdot(a \hat{i}+b \hat{j}+c \hat{k})-(-d)}{\sqrt{a^2+b^2+c^2}}\right|=\left|\frac{a x_1+b y_1+c z_1+d}{\sqrt{a^2+b^2+c^2}}\right|
$

Distance Between The Parallel Planes

The distance between the two parallel planes $a x+b y+c z+d_1=0$ and $a x+b y+c z+d_2=0$ is given by
$
D=\left|\frac{\left(d_2-d_1\right)}{\sqrt{a^2+b^2+c^2}}\right|
$

Let $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1, \mathrm{z}_1\right)$ be any point in the plane $a x+b y+c z+d_1=0$.
Then the distance of the point $P$ from plane $a x+b y+c z+d_2=0$ is
$
D=\left|\frac{a x_1+b y_1+c z_1+d_2}{\sqrt{a^2+b^2+c^2}}\right|
$

Also,
$
\begin{array}{ll}
\text { Also, } & a x_1+b y 1+c z_1+d_1=0 \\
\Rightarrow & \mathbf{D}=\left|\frac{\left(\mathbf{d}_2-\mathbf{d}_1\right)}{\sqrt{\mathbf{a}^2+\mathbf{b}^2+\mathbf{c}^2}}\right|
\end{array}
$

 

Study it with Videos

Distance of a Point From a Plane

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Distance of a Point From a Plane

Mathematics for Joint Entrance Examination JEE (Advanced) : Vectors and 3D Geometry

Page No. : 4.43

Line : 22

E-books & Sample Papers

Get Answer to all your questions