UPES B.Tech Admissions 2025
ApplyRanked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
8 Questions around this concept.
Let $(\alpha, \beta, \gamma)$ be the mirror image of the point $(2,3,5)$ in the line $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$. Then $2 \alpha+3 \beta+4 \gamma$ is equal to
Since P (foot of perpendicular) is the midpoint of M and N (image of a point M in the line), we can get N if P is found out.
Cartesian Form
Let $\mathbf{M}(\boldsymbol{\alpha}, \boldsymbol{\beta}, \mathrm{\gamma})$ be the point and $\frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}$ be the equation of line $\mathbf{L}$.
Let $\mathbf{P}$ be the foot of the perpendicular from $\mathbf{M}$ to line $\mathbf{L}$ and let $\mathbf{N}$ be the image of the point in the given line, where $\mathbf{M P}=\mathbf{P N}$
Let the coordinates of $P$ be
$
\left(x_0+a \lambda, y_0+b \lambda, z_0+c \lambda\right)
$
Then, direction ratios of $P L$ are
$
\left(x_0+a \lambda-\alpha, y_0+b \lambda-\beta, z_0+c \lambda-\gamma\right)
$
since, MP is perpendicular to the given line, whose direction ratios are $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$.
$
\begin{array}{ll}
\therefore & a \cdot\left(x_0+a \lambda-\alpha\right)+b \cdot\left(y_0+b \lambda-\beta\right)+c \cdot\left(z_0+c \lambda-\gamma\right)=0 \\
\Rightarrow & \lambda=\frac{a\left(\alpha-x_0\right)+b\left(\beta-y_0\right)+c\left(\gamma-z_0\right)}{a^2+b^2+c^2}
\end{array}
$
Substituting the value of λ we get coordinates of point P (foot of perpendicular)
As N (α’, β’, γ’) is image of point M(α, β, γ)
∴ mid-point of MN is point P
$
\begin{array}{ll}
\therefore & \frac{\alpha+\alpha^{\prime}}{2}=x_0+a \lambda, \quad \frac{\beta+\beta^{\prime}}{2}=y_0+b \lambda, \quad \frac{\gamma+\gamma^{\prime}}{2}=z_0+\alpha \lambda \\
\therefore & \alpha^{\prime}=2\left(x_0+a \lambda\right)-\alpha, \beta^{\prime}=2\left(y_0+b \lambda\right)-\beta, \gamma^{\prime}=2\left(z_0+c \lambda\right)-\gamma
\end{array}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"