Amrita University BTech Admission Through JEE Main 2025 and AEEE

Normal in point and Parametric and Slope form of parabola - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 84 Questions around this concept.

Solve by difficulty

The number of normals drawn from a point (3,0) to the parabola \mathrm{y^{2}=4 x} is/are:

An equilateral triangle SAB is inscribed in the parabola $\mathrm{y}^2=4 \mathrm{ax}$ having its focus at ' $S^{\prime}$ ' If chord AB lies towards the left of S, then side length of this triangle is

The number of distinct normals that can be drawn from \mathrm{\left(\frac{11}{4}, \frac{1}{4}\right) } to the parabola \mathrm{ y^2=4 x} is 

If the shortest distance of the parabola $y^2=4 x$ from the centre of the circle $x^2+y^2-4 x-16 y+64=0$ is $d$, then $\mathrm{d}^2$ is equal to :

Concepts Covered - 4

NORMAL in point form of parabola

Normal in point form of parabola 

Point Form

The equation of the Normal at the point $P\left(x_1, y_1\right)$ to a Parabola $y^2=4 a x$ is $y-y_1=-\frac{y_1}{2 a}\left(x-x_1\right)$

Proof:

The equation of tangent to the parabola $y^2=4 a x$ at $\left(x_1, y_1\right)$ is $y_1=2 a\left(x+x_1\right)$.
Slope of the tangent at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\frac{2 \mathrm{a}}{\mathrm{y}_1}$ slope of normal at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ become $-\frac{\mathrm{y}_1}{2 \mathrm{a}}$
$\therefore$ Equation of normal at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\mathrm{y}-\mathrm{y}_1=-\frac{\mathrm{y}_1}{2 \mathrm{a}}\left(\mathrm{x}-\mathrm{x}_1\right)$
\begin{array}{c||c c} \\ \mathbf { Equation \;of \;Parabola } & {\mathbf { \;Normal\; at\; } P\left(x_{1}, y_{1}\right)} \\ \\ \hline \hline\\y^{2}=4ax & y-y_1=-\frac{y_1}{2a}(x-x_1) & {} \\\\ {y^{2}=-4 a x} & {y-y_1=\frac{y_1}{2a}(x-x_1)} & {} \\\\ {x^{2}=4 a y} & {y-y_1=-\frac{2a}{x _1}(x-x_1)} & {} \\\\ {x^{2}=-4 a y} & {y-y_1=\frac{2a}{x_1}(x-x_1)} & {} \\ \end{array}

Normal in Parametric Form of Parabola

Normal in Parametric Form of Parabola

The equation of normal to the parabola $y^2=4 a x$ at the point $\left(\mathrm{at}^2, 2 \mathrm{at}\right)$ is $\mathrm{y}+\mathrm{tx}=2 \mathrm{a} t+\mathrm{at}^3$

Proof:
The equation of the Normal at the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to a Parabola $\mathrm{y}^2=4 \mathrm{ax}$ is

$
\begin{aligned}
& y-y_1=-\frac{y_1}{2 a}\left(x-x_1\right) \\
& \text { replace } x_1 \rightarrow a t^2, y_1 \rightarrow 2 a t \\
& y-2 a t=-t\left(x-a t^2\right) \Rightarrow y+t x=2 a t+a t^3
\end{aligned}
$

NOTE:
$\begin{array}{c||cc} \\\text { {Equation of Parabola} } & {\text { Coordinate }} & {\text { Tangent Equation }} \\\\\hline \hline \\y^{2}=4ax & {\left(at^{2}, 2 a t\right)} & { y+tx=2at+a t^{3}}\\ \\ y^{2}{=-4 a x} & {\left(-a t^{2}, 2 a t\right)} & { y-tx=2at+a t^{3}} \\\\ x^{2} {=4 a y} & {(2 a t, a t^2)} & { x+ty=2at+a t^{3}} \\ \\ x^{2} {=} {-4 a y} & {\left(2 a t,-at^{2}\right)} & { x-ty=2at+a t^{3}} \\ \\ \hline\end{array}$

Normal in Slope Form of Parabola

Normal in Slope Form of Parabola

The equation of the Normal at the point $P\left(x_1, y_1\right)$ to a Parabola $y^2=4 a x$ is

$
\mathrm{y}-\mathrm{y}_1=-\frac{\mathrm{y}_1}{2 \mathrm{a}}\left(\mathrm{x}-\mathrm{x}_1\right)
$

$m$ is the slope of the tangent, then

$
\mathrm{m}=-\frac{\mathrm{y}_1}{2 \mathrm{a}} \Rightarrow \mathrm{y}_1=-2 \mathrm{am}
$

$\left(\mathrm{x}_1, \mathrm{y}_1\right)$ lies on the paarabola $\mathrm{y}^2=4 \mathrm{ax}$

$
\begin{aligned}
& \mathrm{y}_1^2=4 \mathrm{ax}_1 \Rightarrow(2 \mathrm{am})^2=4 \mathrm{ax}_1 \\
& \therefore \mathrm{x}_1=\mathrm{am}^2
\end{aligned}
$

put the value of $\mathrm{x}_1$ and $\mathrm{y}_1$ in the equation $\mathrm{y}-\mathrm{y}_1=-\frac{\mathrm{y}_1}{2 \mathrm{a}}\left(\mathrm{x}-\mathrm{x}_1\right)$ we get

$
\mathrm{y}=\mathrm{mx}-2 \mathrm{am}-\mathrm{am}^3
$

which is equation of normal of the parabola in slope form

TIP

If $\mathrm{c}=-2 \mathrm{am}-\mathrm{am}^3$, then $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ is the equation of normal of the parabola $\mathrm{y}^2=$ 4 ax

TIP

\begin{array}{c||cc} \mathbf { Equation \;of \;Parabola } & {\mathbf { Point \;of \;Contact }} & {\mathbf { Normal\; Equation }} \\\\ \hline\hline \\ {\color{Black} y^{2}{=4 a x}} & {\color{Black} {\left (am^2,-2am \right )} } & {\color{Black} {y=m x-2am-am^3}}\\ \\ {\color{Black} y^{2}{=-4 a x}} & {\color{Black} {\left(-am^2,2am\right)}} & {\color{Black} {y=m x+2am+am^3}} \\\\ {\color{Black} x^{2}{=4 a y}} & {\color{Black} {\left(-\frac{2a}{m},\frac{a}{m^2}\right)}} & {\color{Black} {y=m x+2a+\frac{a}{m^2}}} \\\\ {\color{Black} x^{2}{=-4 a y}} & {\color{Black} {\left(\frac{2a}{m},-\frac{a}{m^2}\right)}} & {\color{Black} {y=m x-2a-\frac{a}{m^2}}}\\\\\hline \end{array}

When the vertex of the parabola at (h, k)

\begin{array}{c||ccl} \mathbf { Equation \;of \;Parabola } & {\mathbf { Point \;of \;Contact }} & &{\mathbf { Normal\; Equation }} \\\\ \hline\hline \\ {\color{Black} (y-k)^{2}{=4 a (x-h)}} & {\color{Black} {\left (h+am^2,k-2am \right )} } & &{\color{Black} {(y-k)=m (x-h)-2am-am^3}}\\ \\ {\color{Black} (y-k)^{2}{=-4 a (x-h)}} & {\color{Black} {\left(h-am^2,k+2am\right)}} & & {\color{Black} {(y-k)=m (x-h)+2am+am^3}} \\\\ {\color{Black} (x-h)^{2}{=4 a (y-k)}} & {\color{Black} {\left(h-\frac{2a}{m},k+\frac{a}{m^2}\right)}} & &{\color{Black} {(y-k)=m (x-h)+2a+\frac{a}{m^2}}} \\\\ {\color{Black} (x-h)^{2}{=-4 a (y-k)}} & {\color{Black} {\left(h+\frac{2a}{m},k-\frac{a}{m^2}\right)}} & &{\color{Black} {(y-k)=m (x-h)-2a-\frac{a}{m^2}}}\\\\\hline \end{array}

Point of Intersection of Normal of a Parabola

Point of Intersection of Normal of a Parabola

Let the equation of parabola be $y^2=4 a x$

Two points, $P \equiv\left(a t_1^2, 2 a t_1\right)$ and $Q \equiv\left(a t_2^2, 2 a t_2\right)$ on the parabola $y^2=4 a x$.
Then, equation of Normal; at $P$ and $Q$ are

$
\begin{aligned}
& y_1=-t_1 x+2 a t_1+a t_1^3 \\
& y_2=-t_2 x+2 a t_2+a t_2^3
\end{aligned}
$

solving (i) and (ii) we get,

$
x=2 a+a\left(t_1^2+t_2^2+t_1 t_2\right), y=-a t_1 t_2\left(t_1+t_2\right)
$
If $R$ is the point of intersection of two normal then,

$
\mathrm{R} \equiv\left[2 \mathrm{a}+\mathrm{a}\left(\mathrm{t}_1^2+\mathrm{t}_2^2+\mathrm{t}_1 \mathrm{t}_2\right),-\mathrm{at}_1 \mathrm{t}_2\left(\mathrm{t}_1+\mathrm{t}_2\right)\right]
$
 

Study it with Videos

NORMAL in point form of parabola
Normal in Parametric Form of Parabola
Normal in Slope Form of Parabola

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

NORMAL in point form of parabola

Mathematics for Joint Entrance Examination JEE (Advanced) : Coordinate Geometry

Page No. : 5.23

Line : 51

Normal in Parametric Form of Parabola

Mathematics for Joint Entrance Examination JEE (Advanced) : Coordinate Geometry

Page No. : 5.23

Line : 51

E-books & Sample Papers

Get Answer to all your questions

Back to top