Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
84 Questions around this concept.
The number of normals drawn from a point to the parabola
is/are:
An equilateral triangle SAB is inscribed in the parabola $\mathrm{y}^2=4 \mathrm{ax}$ having its focus at ' $S^{\prime}$ ' If chord AB lies towards the left of S, then side length of this triangle is
The number of distinct normals that can be drawn from to the parabola
is
If the shortest distance of the parabola $y^2=4 x$ from the centre of the circle $x^2+y^2-4 x-16 y+64=0$ is $d$, then $\mathrm{d}^2$ is equal to :
Normal in point form of parabola
Point Form
The equation of the Normal at the point $P\left(x_1, y_1\right)$ to a Parabola $y^2=4 a x$ is $y-y_1=-\frac{y_1}{2 a}\left(x-x_1\right)$
Proof:
The equation of tangent to the parabola $y^2=4 a x$ at $\left(x_1, y_1\right)$ is $y_1=2 a\left(x+x_1\right)$.
Slope of the tangent at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\frac{2 \mathrm{a}}{\mathrm{y}_1}$ slope of normal at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ become $-\frac{\mathrm{y}_1}{2 \mathrm{a}}$
$\therefore$ Equation of normal at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\mathrm{y}-\mathrm{y}_1=-\frac{\mathrm{y}_1}{2 \mathrm{a}}\left(\mathrm{x}-\mathrm{x}_1\right)$
Normal in Parametric Form of Parabola
The equation of normal to the parabola $y^2=4 a x$ at the point $\left(\mathrm{at}^2, 2 \mathrm{at}\right)$ is $\mathrm{y}+\mathrm{tx}=2 \mathrm{a} t+\mathrm{at}^3$
Proof:
The equation of the Normal at the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to a Parabola $\mathrm{y}^2=4 \mathrm{ax}$ is
$
\begin{aligned}
& y-y_1=-\frac{y_1}{2 a}\left(x-x_1\right) \\
& \text { replace } x_1 \rightarrow a t^2, y_1 \rightarrow 2 a t \\
& y-2 a t=-t\left(x-a t^2\right) \Rightarrow y+t x=2 a t+a t^3
\end{aligned}
$
NOTE:
$\begin{array}{c||cc} \\\text { {Equation of Parabola} } & {\text { Coordinate }} & {\text { Tangent Equation }} \\\\\hline \hline \\y^{2}=4ax & {\left(at^{2}, 2 a t\right)} & { y+tx=2at+a t^{3}}\\ \\ y^{2}{=-4 a x} & {\left(-a t^{2}, 2 a t\right)} & { y-tx=2at+a t^{3}} \\\\ x^{2} {=4 a y} & {(2 a t, a t^2)} & { x+ty=2at+a t^{3}} \\ \\ x^{2} {=} {-4 a y} & {\left(2 a t,-at^{2}\right)} & { x-ty=2at+a t^{3}} \\ \\ \hline\end{array}$
Normal in Slope Form of Parabola
The equation of the Normal at the point $P\left(x_1, y_1\right)$ to a Parabola $y^2=4 a x$ is
$
\mathrm{y}-\mathrm{y}_1=-\frac{\mathrm{y}_1}{2 \mathrm{a}}\left(\mathrm{x}-\mathrm{x}_1\right)
$
$m$ is the slope of the tangent, then
$
\mathrm{m}=-\frac{\mathrm{y}_1}{2 \mathrm{a}} \Rightarrow \mathrm{y}_1=-2 \mathrm{am}
$
$\left(\mathrm{x}_1, \mathrm{y}_1\right)$ lies on the paarabola $\mathrm{y}^2=4 \mathrm{ax}$
$
\begin{aligned}
& \mathrm{y}_1^2=4 \mathrm{ax}_1 \Rightarrow(2 \mathrm{am})^2=4 \mathrm{ax}_1 \\
& \therefore \mathrm{x}_1=\mathrm{am}^2
\end{aligned}
$
put the value of $\mathrm{x}_1$ and $\mathrm{y}_1$ in the equation $\mathrm{y}-\mathrm{y}_1=-\frac{\mathrm{y}_1}{2 \mathrm{a}}\left(\mathrm{x}-\mathrm{x}_1\right)$ we get
$
\mathrm{y}=\mathrm{mx}-2 \mathrm{am}-\mathrm{am}^3
$
which is equation of normal of the parabola in slope form
TIP
If $\mathrm{c}=-2 \mathrm{am}-\mathrm{am}^3$, then $\mathrm{y}=\mathrm{mx}+\mathrm{c}$ is the equation of normal of the parabola $\mathrm{y}^2=$ 4 ax
TIP
When the vertex of the parabola at (h, k)
Point of Intersection of Normal of a Parabola
Let the equation of parabola be $y^2=4 a x$
Two points, $P \equiv\left(a t_1^2, 2 a t_1\right)$ and $Q \equiv\left(a t_2^2, 2 a t_2\right)$ on the parabola $y^2=4 a x$.
Then, equation of Normal; at $P$ and $Q$ are
$
\begin{aligned}
& y_1=-t_1 x+2 a t_1+a t_1^3 \\
& y_2=-t_2 x+2 a t_2+a t_2^3
\end{aligned}
$
solving (i) and (ii) we get,
$
x=2 a+a\left(t_1^2+t_2^2+t_1 t_2\right), y=-a t_1 t_2\left(t_1+t_2\right)
$
If $R$ is the point of intersection of two normal then,
$
\mathrm{R} \equiv\left[2 \mathrm{a}+\mathrm{a}\left(\mathrm{t}_1^2+\mathrm{t}_2^2+\mathrm{t}_1 \mathrm{t}_2\right),-\mathrm{at}_1 \mathrm{t}_2\left(\mathrm{t}_1+\mathrm{t}_2\right)\right]
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"