Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Line of Intersection of Two Plane and Angle Between a Line and a Plane, Intersection of Line and Plane is considered one of the most asked concept.
41 Questions around this concept.
The distance of the point (1, 0, 2) from the line point of intersection of the line
and the plane , is:
Let $L$ be the line of intersection of planes $\vec{r} \cdot(\hat{i}-\hat{j}+2 \hat{k})=2$ and $\vec{r} \cdot(2 \hat{i}+\hat{j}-\hat{k})=2$. If $\mathrm{P}(\alpha, \beta, \gamma)$ is the foot of perpendicular on L from the point $(1,2,0)$, then the value of $35(\alpha+\beta+\gamma)$ is equal to :
If the line, lies in
the plane, then is equal to:
JEE Main 2025: Rank Predictor | Admit Card Link | January Session Exam Analysis
JEE Main 2025: Memory Based Question: Jan 24- Shift 1 | Jan 23- Shift 1 | Shift 2 | Jan 22- Shift 1 | Shift 2
JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs
The line $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ is parallel to the plane:
x-axis is the intersection of two planes
The intersection of two non-parallel planes always form a line, for example in three dimensional coordinate system, intersection of the XY plane with XZ plane forms X-axis.
What is the equation of line when YZ plane and XZ plane intersects?
Let the equation of two non-parallel planes be $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{n}}_1=d_1$ and $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{n}}_2=d_2$
Now, line of intersection of planes is perpendicular to $\overrightarrow{\mathbf{n}}_1$ and $\overrightarrow{\mathbf{n}}_2$.
Therefore, the line of intersection is parallel to vector $\overrightarrow{\mathbf{n}}_1 \times \overrightarrow{\mathbf{n}}_2$.
Hence the vector equation for the line of intersection is given by
$
\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}_0+t \overrightarrow{\mathbf{v}}
$
Where, $\overrightarrow{\mathbf{v}}$ is the vector result of the normal vector of the two planes.
To find the line of intersection of planes $a_1 x+b_1 y+c_1 z=d_1$ and $a_2 x+b_2 y+c_2 z=d_2$, then first find any point on the line by putting $z=0$ (say), then we can find corresponding values of $x$ and $y$ be solving equations $a_1 x+b_1 y+c_1 z=d_1$ and $a_2 x+b_2 y+c_2 z=d_2$. Thus, by fixing the value of $z=\lambda$ we can find the corresponding value of $x$ and $y$ in terms of $\lambda$. After getting $x, y$, and $z$ in terms of $\lambda$ we can find the equation of line in symmetric form.|
Illustration
The line of intersection of two given plane $P_1:-3 x+2 y-3 z-1=0$ and $P_2: 2 x-y-4 z+2=0$ is
Let $z=\lambda$
Then $-3 x+2 y=1+3 \lambda$
and $2 x-y=-2+4 \lambda$
Solve these two equations, $x=-3+11 \lambda$ and $y=-4+18 \lambda$
The equation of the line is
$\frac{x+3}{11}=\frac{y+4}{18}=\frac{z-0}{1}=\lambda$
Aliter
The general equation of plane and its normal is $\mathrm{ax}+\mathrm{by}+\mathrm{cz}+\mathrm{d}=0$ and $\overrightarrow{\mathbf{n}}=a \hat{i}+b \hat{j}+c \hat{k}$
Then, $\overrightarrow{\mathbf{n}}_1=-3 \hat{i}+2 \hat{j}-3 \hat{k}$
and $\overrightarrow{\mathbf{n}}_2=2 \hat{i}-\hat{j}-4 \hat{k}$
$
\overrightarrow{\mathbf{s}}=\overrightarrow{\mathbf{n}}_1 \times \overrightarrow{\mathbf{n}}_2=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-3 & 2 & -3 \\
2 & -1 & -4
\end{array}\right|=-11 \vec{i}-18 \vec{j}-\vec{k}, \quad \vec{s}=a \vec{i}+b \vec{j}+c \vec{k}
$
To write the equation of the line of intersection, i.e., $\frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}$, we still need the coordinates of any of its points $\mathrm{P}\left(\mathrm{x}_0, \mathrm{y}_0, \mathrm{z}_0\right)$.
Let this point be the intersection of the intersection line and the XY coordinate plane.
Then, the coordinates of the point of intersection (x, y, 0) must satisfy the equations of the given planes.
Therefore, by putting $z=0$ into $P_1$ and $P_2$ we get,
$
\begin{aligned}
& -3 x+2 y-3(0)-1=0 \\
& 2 x-y-4(0)+2=0 \\
& x=-3 \text { and } y=-4
\end{aligned}
$
So the line of intersection is $\frac{x+3}{-11}=\frac{y+4}{-18}=\frac{z}{-1}$ or $\frac{x+3}{11}=\frac{y+4}{18}=\frac{z}{1}$.
Angle Between a Line and a Plane
The angle between a line and a plane is the complement of the angle between the line and normal to the plane.
Vector Form
If the equation of the line is $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}_0+\lambda \overrightarrow{\mathbf{b}}$ and the equation of the plane is $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{n}}=d$. Then the angle $\theta$ between the line and the normal to the plane is
$
\cos \theta=\left|\frac{\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{n}}}{|\overrightarrow{\mathbf{b}}| \cdot|\overrightarrow{\mathbf{n}}|}\right|
$
and so the angle $\varphi$ between the line and the plane is given by $90^{\circ}-\theta$,
$
\begin{aligned}
\sin (90-\theta) & =\cos \theta \\
\sin \phi & =\left|\frac{\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{n}}}{|\overrightarrow{\mathbf{b}}| \cdot|\overrightarrow{\mathbf{n}}|}\right| \quad \text { or } \quad \phi=\sin ^{-1}\left|\frac{\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{n}}}{|\overrightarrow{\mathbf{b}}| \cdot|\overrightarrow{\mathbf{n}}|}\right|
\end{aligned}
$
i.e.
Cartesian Form
The angle between a line and a plane
If the line is $\frac{x-x_1}{a}=\frac{y-y_1}{b}=\frac{z-z_1}{c}$
and the plane is $a_1 x+b_1 y+c_1 z+d=0$ is given by
$
\sin \Theta=\frac{a_1 a+b_1 b+c_1 c}{\sqrt{a_1^2+b_1^2+c_1^2} \sqrt{a^2+b^2+c^2}}
$
NOTE:
Line $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}_0+\lambda \overrightarrow{\mathbf{b}}$ and plane $\overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{n}}=d$ are perpendicular if $\overrightarrow{\mathbf{b}}=\lambda \overrightarrow{\mathbf{n}}$ or $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{n}}=0$ and parallel if $\overrightarrow{\mathbf{b}} \perp \overrightarrow{\mathbf{n}}$ or $\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{n}}=0$
Given equation of the line is $\frac{x-x_1}{l}=\frac{y-y_1}{m}=\frac{z-z_1}{n}$ and the equation of the plane is ax + by + cz + d = 0
Let $\quad \frac{x-x_1}{l}=\frac{y-y_1}{m}=\frac{z-z_1}{n}=r$
$
\therefore \quad\left(x=r l+x_1, y=m r+y_1, z=n r+z_1\right)
$
be a point in the plane say $P$.
It must satisfy the equation of plane.
$
\begin{aligned}
& \therefore \quad a\left(x_1+l r\right)+b\left(y_1+m r\right)+c\left(z_1+n r\right)+d=0 \\
& \Rightarrow \quad\left(a x_1+b y_1+c z_1+d\right)+r(a l+b m+c n)=0 \\
& \Rightarrow \quad r=-\frac{\left(a x_1+b y_1+c z_1+d\right)}{a l+b m+c n}
\end{aligned}
$
Put the value of r in $\left(x=r l+x_1, y=m r+y_1, z=n r+z_1\right)$, you will get the coordinates of point P.
Condition for a Line to be Parallel to a Plane
Condition for a Line to be Parallel to a Plane
The line $\frac{x-x_1}{l}=\frac{y-y_1}{m}=\frac{z-z_1}{n}$ is parallel to plane $\mathrm{ax}+\mathrm{by}+\mathrm{cz}+\mathrm{d}=0$ iff:
$
\theta=0 \text { or } \pi \text { or } \sin \theta=0 \Rightarrow a l+b m+c m=0
$
Condition for a Line to Lie in the Plane
Condition for the line $\frac{x-x_1}{l}=\frac{y-y_1}{m}=\frac{z-z_1}{n}$ to lie in the plane $\mathrm{ax}+\mathrm{by}+\mathrm{cz}+\mathrm{d}=0$ are:
$
a l+b m+c n=0 \text { and } a x_1+b y_1+c z_1+d=0
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"