UPES B.Tech Admissions 2025
ApplyRanked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Interference of light waves- 1, Interference of light waves- 2 is considered one of the most asked concept.
35 Questions around this concept.
An initially parallel cylindrical beam travels in a medium of refractive index are positive constant and is the intensity of the light beam. The intensity of the beam is decreasing with increasing radius. As the beam enters the medium, it will
In order to observe interference in light waves, the following conditions must be met:
Coherent sources-
Two sources are said to be coherent if they produce waves of the same frequency with a constant phase difference.
- The relation between Phase difference $(\Delta \phi)$ and Path difference $(\Delta x)$
Phase difference $(\Delta \phi)$ :
The difference between the phases of two waves at a point is called phase difference.
i.e. if $y_1=a_1 \sin \omega t$ and $y_2=a_2 \sin (\omega t+\phi)$ so phase difference $=\phi$
Path difference $(\Delta x)$ :
The difference in path lengths of two waves meeting at a point is called path difference between the waves at that point.
And The relation between Phase difference $(\Delta \phi)$ and Path difference $(\Delta x)$ is given as
$
\Delta \phi=\frac{2 \pi}{\lambda} \Delta x=k \Delta x
$
where $\lambda=$ wavelength of waves
Principle of Super Position-
According to the principle of Super Position of waves, when two or more waves meet at a point, then the
resultant wave has a displacement $(\mathrm{y})$ which is the algebraic sum of the displacements ( $y_1 \quad$ and $y_2$ ) of each wave.
$
\text { i.e } y=y_1+y_2
$
consider two waves with the equations as
$
\begin{aligned}
& y_1=A_1 \sin (k x-w t) \\
& y_2=A_2 \sin (k x-w t+\phi)
\end{aligned}
$
where $\phi_{\text {is the phase difference between waves }} y_1$ and $y_2$.
And According to the principle of Super Position of waves
$
\begin{aligned}
& y=y_1+y_2=A_1 \sin (k x-w t)+A_2 \sin (k x-w t+\phi) \\
& \quad=A_1 \sin (k x-w t)+A_2[\sin (k x-w t) \cos \phi+\sin \phi \cos (k x-\omega t)] \\
& \Rightarrow y=\sin (k x-w t)\left[A_1+A_2 \cos \phi\right]+A_2 \sin \phi \cos (k x-w t) \ldots(1)
\end{aligned}
$
Now let
$
\begin{aligned}
& \qquad A \cos \theta=A_1+A_2 \cos \phi \\
& \text { and } A \sin \theta=A_2 \sin \phi
\end{aligned}
$
Putting this in equation (1) we get
$
y=A \sin (k x-\omega t) \cos \theta+A \sin \theta \cos (k x-\omega t)
$
thus we get the equation of the resultant wave as
$
y=A \sin (k x-\omega t+\theta)
$
where $A=$ Resultant amplitude of two waves
$
\begin{aligned}
& \text { and } A=\sqrt{A_1^2+A_2^2+2 A_1 A_2 \cos \phi} \\
& \theta=\tan ^{-1}\left(\frac{A_2 \sin \phi}{A_1+A_2 \cos \phi}\right) \\
& \text { and }
\end{aligned}
$
where
$A_1=$ the amplitude of wave 1
$A_2=$ the amplitude of wave 2
- $A_{\max }=A_1+A_2$ and $A_{\min }=A_1-A_2$
Resultant Intensity of two waves (I)-
Using $I \quad \alpha \quad A^2$
we get $I=I_1+I_2+2 \sqrt{I_1 I_2} \cos \phi$
where
$I_1=$ The intensity of wave 1
$I_2=$ The intensity of wave 2
- $I_{\max }=I_1+I_2+2 \sqrt{I_1 I_2} \Rightarrow I_{\max }=\left(\sqrt{I_1}+\sqrt{I_2}\right)^2$
- $I_{\min }=I_1+I_2-2 \sqrt{I_1 I_2} \Rightarrow I_{\min }=\left(\sqrt{I_1}-\sqrt{I_2}\right)^2$
- For identical sources-
$
I_1=I_2=I_0 \Rightarrow I=I_0+I_0+2 \sqrt{I_0 I_0} \cos \phi=4 I_0 \cos ^2 \frac{\phi}{2}
$
Average intensity : $I_{a v}=\frac{I_{\max }+I_{\min }}{2}=I_1+I_2$
- The ratio of maximum and minimum intensities
$
\begin{aligned}
\frac{I_{\max }}{I_{\min }} & =\left(\frac{\sqrt{I_1}+\sqrt{I_2}}{\sqrt{I_1}-\sqrt{I_2}}\right)^2=\left(\frac{\sqrt{I_1 / I_2}+1}{\sqrt{I_1 / I_2}-1}\right)^2=\left(\frac{a_1+a_2}{a_1-a_2}\right)^2=\left(\frac{a_1 / a_2+1}{a_1 / a_2-1}\right)^2 \\
\sqrt{\frac{I_1}{I_2}} & =\frac{a_1}{a_2}=\left(\frac{\sqrt{\frac{I_{\max }}{I_{\min }}}+1}{\sqrt{\frac{I_{\max }}{I_{\min }}}-1}\right)
\end{aligned}
$
Interference of Light-
It is of the following two types.
1. Constructive interference-
i.e we will see bright fringe/spot.
- The phase difference between the waves at the point of observation is $\phi=0^{\circ}$ or $2 n \pi$
- Path difference between the waves at the point of observation is $\Delta x=n \lambda(i . e$. even multiple of $\lambda / 2)$
- The resultant amplitude at the point of observation will be maximum
$
\text { i.e } \quad A_{\max }=a_1+a_2
$
If $a_1=a_2=a_0 \Rightarrow A_{\max }=2 a_0$
- Resultant intensity at the point of observation will be maximum
$
\text { i.e } \begin{aligned}
I_{\max } & =I_1+I_2+2 \sqrt{I_1 I_2} \\
I_{\max } & =\left(\sqrt{I_1}+\sqrt{I_2}\right)^2 \\
\text { If } \quad I_1 & =I_2=I_0 \Rightarrow I_{\max }=4 I_0
\end{aligned}
$
2. Destructive interference-
- When the waves meet a point with the opposite phase, Destructive interference is obtained at that point.
i.e we will see dark fringe/spot.
- The phase difference between the waves at the point of observation is
$
\begin{aligned}
& \phi=180^{\circ} \text { or }(2 n-1) \pi ; n=1,2, \ldots \\
& \text { or }(2 n+1) \pi ; n=0,1,2 \ldots
\end{aligned}
$
- Path difference between the waves at the point of observation is
$
\Delta x=(2 n-1) \frac{\lambda}{2}(\text { i.e. odd multiple of } \lambda / 2)
$
- The resultant amplitude at the point of observation will be minimum
$
\begin{aligned}
& \text { i.e } A_{\min }=A_1-A_2 \\
& \text { If } A_1=A_2 \Rightarrow A_{\min }=0
\end{aligned}
$
- Resultant intensity at the point of observation will be minimum
$
\begin{gathered}
I_{\min }=I_1+I_2-2 \sqrt{I_1 I_2} \\
I_{\min }=\left(\sqrt{I_1}-\sqrt{I_2}\right)^2 \\
\text { If } I_1=I_2=I_0 \Rightarrow I_{\min }=0
\end{gathered}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"