JEE Main Registration 2025 Session 1 (Open) - Link, Last Date, Fees, How to Apply

Interference Of Light - Condition And Types - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Interference of light waves- 1, Interference of light waves- 2 is considered one of the most asked concept.

  • 35 Questions around this concept.

Solve by difficulty

An initially parallel cylindrical beam travels in a medium of refractive index  \mu (I)=\mu _{0}+\mu _{2}I,where\;\mu _{0}\; and\; \mu _{2} are positive constant and I is the intensity of the light beam. The intensity of the beam is decreasing with increasing radius. As the beam enters the medium, it will

Concepts Covered - 2

Interference of light waves- 1

In order to observe interference in light waves, the following conditions must be met:

  •  The sources must be coherent.
  • The source should be monochromatic (that is, of a single wavelength).

Coherent sources-

Two sources are said to be coherent if they produce waves of the same frequency with a constant phase difference.  

  • The relation between  Phase difference (\Delta \phi )  and Path difference  (\Delta x )

Phase difference (\Delta \phi ):

The difference between the phases of two waves at a point is called phase difference.

\text { i.e. if } y_{1}=a_{1} \sin \omega t \text { and } y_{2}=a_{2} \sin (\omega t+\phi) \text { so phase difference }=\phi

Path difference (\Delta x )

The difference in path lengths of two waves meeting at a point is called path difference between the waves at that point.

And The relation between  Phase difference (\Delta \phi )  and Path difference  (\Delta x ) is given as

   \Delta \phi =\frac{2\pi }{\lambda }\Delta x=k\Delta x

where \lambda =wavelength \ of \ waves

 

 

Interference of light waves- 2

Principle of Super Position-

According to the principle of Super Position of waves, when two or more waves meet at a point, then the resultant wave has a displacement (y) which is the algebraic sum of the displacements ( y_1 \ \ and \ \ y_2) of each wave.

i.e y=y_1+y_2

consider two waves with the equations as

 \begin{array}{l}{y_{1}=A_{1} \sin (k x-w t)} \\ {y_{2}=A_{2} \sin (k x-w t+\phi)}\end{array}

where \phi is the phase difference between waves y_1 \ \ and \ \ y_2.

And According to the principle of Super Position of waves

\begin{aligned} y=& y_{1}+y_{2}=A_{1} \sin (k x-w t)+A_{2} \sin (k x-w t+\phi) \\ &=A_{1} \sin (k x-w t)+A_{2}[\sin (k x-w t) \cos \phi+\sin \phi \cos (k x-\omega t)] \\ \Rightarrow y &=\sin (k x-w t)\left[A_{1}+A_{2} \cos \phi\right]+A_{2} \sin \phi \cos (k x-w t) \dots (1) \end{aligned}

Now let

 Acos\theta =A_{1}+A_{2} \cos \phi \\ and \ \ Asin\theta=A_{2} sin \phi

Putting this in equation (1) we get 

y=A \sin (k x-\omega t) \cos \theta+A \sin \theta \cos (k x-\omega t)

thus we get the equation of the resultant wave as

y=A \sin (k x-\omega t+\theta)

where A=Resultant amplitude of two waves

and A= \sqrt{{A_{1}}^{2}+{A_{2}}^{2}+2A_{1}A_{2}\cos \phi}

and \theta=\tan^{-1} \left (\frac{A_{2} \sin \phi }{A_{1}+A_{2} \cos \phi} \right )

where 

A_{1}= the amplitude of wave 1

A_{2}=  the amplitude of wave 2

  • \begin{array}{c} \ \ A_{\max }={A_{1}+A_{2}} \ \ and \ \ A_{\min }={A_{1}-A_{2}}\end{array}

Resultant Intensity of two waves (I)-

Using I \ \ \alpha \ \ A^2

we get  I= I_{1}+I_{2}+2\sqrt{I_{1}I_{2}}\cos \phi

where 

I_{1}= The intensity of wave 1

I_{2}= The intensity of wave 2

  • \begin{aligned} \ \ I_{\max } &=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \Rightarrow I_{\max } &=(\sqrt{I_{1}}+\sqrt{I_{2}})^{2} \end{aligned}
  • \begin{array}{c}{I_{\min }=I_{1}+I_{2}-2 \sqrt{I_{1} I_{2}}} \Rightarrow {I_{\min }=(\sqrt{I_{1}}-\sqrt{I_{2}})^{2}} \end{array}
  • For identical sources-

          I_{1}=I_{2}=I_{0} \Rightarrow I=I_{0}+I_{0}+2 \sqrt{I_{0} I_{0}} \cos \phi=4 I_{0} \cos ^{2} \frac{\phi}{2}

  • \text { Average intensity : } I_{a v}=\frac{I_{\max }+I_{\min }}{2}=I_{1}+I_{2}
  • The ratio of maximum and minimum intensities

\frac{I_{\max }}{I_{\min }}=\left(\frac{\sqrt{I_{1}}+\sqrt{I_{2}}}{\sqrt{I_{1}}-\sqrt{I_{2}}}\right)^{2}=\left(\frac{\sqrt{I_{1} / I_{2}}+1}{\sqrt{I_{1} / I_{2}}-1}\right)^2=\left(\frac{a_{1}+a_{2}}{a_{1}-a_{2}}\right)^{2}=\left(\frac{a_{1} / a_{2}+1}{a_{1} / a_{2}-1}\right)^{2}

or

 \sqrt{\frac{I_{1}}{I_{2}}}=\frac{a_{1}}{a_{2}}=\left(\frac{\sqrt{\frac{I_{\max }}{I_{\min }}}+1}{\sqrt{\frac{I_{\max }}{I_{\min }}-1}}\right)

Interference of Light-

It is of the following two types.

1. Constructive interference-

  • When the waves meet a point with the same phase, constructive interference is obtained at that point.

            i.e we will see bright fringe/spot.

  • The phase difference between the waves at the point of observation is  \phi=0^{\circ} \text { or } 2 n \pi

  • Path difference between the waves at the point of observation is \Delta x=n \lambda(i . e . \text { even multiple of } \lambda / 2)

  • The resultant amplitude at the point of observation will be maximum

      \begin{array}{c} i.e \ \ A_{\max }={a_{1}+a_{2}} \\ {\text { If } a_{1}=a_{2}=a_{0} \Rightarrow A_{\max }=2 a_{0}}\end{array}

  • Resultant intensity at the point of observation will be maximum

   \begin{aligned} \ \ i.e \ \ I_{\max } &=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \\ I_{\max } &=(\sqrt{I_{1}}+\sqrt{I_{2}})^{2} \\ \text { If } \quad I_{1} &=I_{2}=I_{0} \Rightarrow I_{\max }=4 I_{0} \end{aligned}

 

2. Destructive interference-

  • When the waves meet a point with the opposite phase, Destructive interference is obtained at that point.

            i.e we will see dark fringe/spot.

  • The phase difference between the waves at the point of observation is 

        \begin{array}{l}{\phi=180^{\circ} \text { or }(2 n-1) \pi ; n=1,2, \ldots} \\ {\text { or }(2 n+1) \pi ; n=0,1,2 \ldots .}\end{array}  

  • Path difference between the waves at the point of observation is \Delta x=(2 n-1) \frac{\lambda}{2}(\text { i.e. odd multiple of } \lambda / 2)

  • The resultant amplitude at the point of observation will be minimum

      \begin{array}{c} i.e \ \ A_{\min }={A_{1}-A_{2}} \\ {\text { If } A_{1}=A_{2} \Rightarrow A_{\min }=0}\end{array}

  • Resultant intensity at the point of observation will be minimum

    \begin{array}{c}{I_{\min }=I_{1}+I_{2}-2 \sqrt{I_{1} I_{2}}} \\ {I_{\min }=(\sqrt{I_{1}}-\sqrt{I_{2}})^{2}} \\ {\text { If } I_{1}=I_{2}=I_{0} \Rightarrow I_{\min }=0}\end{array}

Study it with Videos

Interference of light waves- 1
Interference of light waves- 2

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top