Jain University B.Tech Admissions 2026
100% Placement Record | Highest CTC 54 LPA | NAAC A++ Accredited | Ranked #62 in India by NIRF Ranking 2025 | JEE & JET Scores Accepted
Different Form of the Equation of the Circle is considered one the most difficult concept.
35 Questions around this concept.
The centres of those circles which touch the circle, $x^2+y^2-8 x-8 y-4=0$, externally and also touch the $x$ axis, lie on :
The circle passing through $(1,-2)$ and touching the axis of $x$ at $(3,0)$ also passes through the point :
A circle touches the $x$-axis and also touches the circle with centre at $(0,3)$ and radius 2. The locus of the centre of the circle is
New: JEE Main 2026 City Intimation Slip Link
Latest: Free All-India JEE Main 2026 Mock Test - Attempt Now
JEE Main Sample Papers: Physics | Chemistry | Maths | Top 30 Repeated Questions
JEE Main QP & Mock: Previous 10 Year Questions | Chapter Wise PYQs | Mock test Series
Let C be the circle with centre at $(1,1)$ and radius $=1$. If T is the circle centred at $(0, \mathrm{y})$, passing through the origin and touching the circle C externally, then the radius of T is equal to:
Two tangents are drawn from the point $P(-1,1)$ to the circle $x^2+y^2-2 x-6 y+6=0$. If these tangents touch the circle at points $A$ and $B$, and if $D$ is a point on the circle such that length of the segments AB and AD are equal, then the area of the triangle ABD is equal to
A circle touches the lines $\mathrm{y}=\frac{\mathrm{x}}{\sqrt{3}}, \mathrm{y}=\sqrt{3} \mathrm{x}$ the centre of this circle lies in the first quadrant then one possible equation of this circle is
Equation of circle touching the lines $\mathrm{|x-2|+|y-3|=4}$ will be
100% Placement Record | Highest CTC 54 LPA | NAAC A++ Accredited | Ranked #62 in India by NIRF Ranking 2025 | JEE & JET Scores Accepted
World-class and highly qualified engineering faculty. High-quality global education at an affordable cost
Four distinct points lie on a circle when:
Intercepts Made by Circle on the Axis
If the equation of Circle is $x^2+y^2+2 g x+2 f y+c=0$, then
Length of $x$-intercept $: 2 \sqrt{g^2-c}$
Length of y -intercept : $2 \sqrt{\mathrm{f}^2-\mathrm{c}}$
Proof:

from the figure
length of intercepts on $X-$ axis and $Y-$ axis are $|A B|$ and $|C D|$
$
|A B|=\left|x_2-x_1\right|,|C D|=\left|y_2-y_1\right|
$
Put $y=0$, to get points A and B , where circle intersects the $X-$ axis
$
\Rightarrow x^2+2 g x+c=0
$
Since, circle intersects $X-$ axis at two points $A\left(x_1, 0\right)$ and $B\left(x_2, 0\right)$ so x 1 and x 2 are roots of the above equation, and hence, $x_1+x_2=-2 g x, x_1 x_2=c$
$
|A B|=\left|x_2-x_1\right|=\sqrt{\left(x_2+x_1\right)^2-4 x_1 x_2}=2 \sqrt{g^2-c}
$
Similarly,
$
|C D|=2 \sqrt{f^2-c}
$
Different Form of a Circle
When the circle touches X-axis
$\begin{aligned} & (\mathrm{a}, \mathrm{b}) \text { be the centre of the circle, then radius }=|\mathrm{b}| \\ & \therefore \text { equation of circle becomes } \\ & \Rightarrow(\mathrm{x}-\mathrm{a})^2+(\mathrm{y}-\mathrm{b})^2=\mathrm{b}^2 \\ & \Rightarrow \mathrm{x}^2+\mathrm{y}^2-2 \mathrm{ax}-2 \mathrm{by}+\mathrm{a}^2=0\end{aligned}$

When the circle touches Y-axis
$\begin{aligned} & (\mathrm{a}, \mathrm{b}) \text { be the centre of the circle, then radius }=|\mathrm{a}| \\ & \therefore \text { equation of circle becomes } \\ & \Rightarrow(\mathrm{x}-\mathrm{a})^2+(\mathrm{y}-\mathrm{b})^2=\mathrm{a}^2 \\ & \Rightarrow \mathrm{x}^2+\mathrm{y}^2-2 \mathrm{ax}-2 \mathrm{by}+\mathrm{b}^2=\mathbf{0}\end{aligned}$

When the circle touches both the axes:
$(a, a)$ be the centre of the circle, then radius $=|a| \mid$
$
\begin{aligned}
& \therefore \text { equation of circle becomes } \\
& \Rightarrow(\mathrm{x}-\mathrm{a})^2+(\mathrm{y}-\mathrm{a})^2=\mathrm{a}^2 \\
& \Rightarrow \mathrm{x}^2+\mathrm{y}^2-2 \mathrm{ax}-2 \mathrm{ay}+\mathrm{a}^2=0
\end{aligned}
$
Note:
In this case, the centre can also be $(a,-a)$ and radius $|a|$.

"Stay in the loop. Receive exam news, study resources, and expert advice!"
