JEE Main Cutoff for IIIT Srirangam 2024 - Check Here

Hyperbola - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Length of Latusrectum and Parametric Equation of Hyperbola, Conjugate Hyperbola is considered one of the most asked concept.

  • 103 Questions around this concept.

Solve by difficulty

The locus of the mid point of the chords of  \mathrm{\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1}, which pass through a fixed point \mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) is

The equation of the hyperbola, in standard form, whose vertices are at ( \pm 5,0) and foci at ( \pm 7,0), is

The equation  \mathrm{\left|\sqrt{x^2+(y-1)^2}-\sqrt{x^2+(y+1)^2}\right|=K} will represents a hyperbola, if

A hyperbola has centre C and one focus at P(6, 8).  If its two directrices are \mathrm{3 x+4 y+10=0} and \mathrm{3 x+4 y-10=0} then CP=

If the equation \mathrm{4 x^2+k y^2=18}  represents a rectangular hyperbola, then k = 

 

 

If a hyperbola whose foci are S ≡ (2, 4) and S′ ≡ (8, –2) touches x-axis, then the equation of the hyperbola is

 

If hyperbola \mathrm{x^2-y^2=a^2}  and \mathrm{x y=c^2}  are of same size, then 

 

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships

The equation \mathrm{16 x^2-3 y^2-32 x-12 y-44=0} represents a hyperbola 

 

The vertices of the hyperbola \mathrm{9 x^2-16 y^2-36 x+96 y-252=0} are 

JEE Main Exam's High Scoring Chapters and Topics
This free eBook covers JEE Main important chapters & topics to study just 40% of the syllabus and score up to 100% marks in the examination.
Download EBook

The equation of the conic with focus at (1,-1), directrix along \mathrm{x-y+1=0} and with eccentricity \mathrm{\sqrt{2}}  is 

 

Concepts Covered - 3

What is Hyperbola?

Hyperbola:

A Hyperbola is the set of all points (x, y) in a plane such that the difference of their distances from two fixed points is a constant. Each fixed point is called a focus (plural: foci).

OR,

The locus of a point which moves in a plane such that the ratio of the distance from a fixed point (focus) to the distance from a fixed line (directrix) is constant. The constant is known as eccentricity e and for hyperbola e > 1.

 

Consider the figure, $O$ is the origin, $S$ and $\mathrm{S}^{\prime}$ are the foci and ZM and $Z^{\prime} \mathrm{M}^{\prime}$ are the directrices.
The foci are $S(a e, 0)$ and $S^{\prime}(a e, 0)$. The equation of directrices: $Z M$ is $x=a / e$ and $Z^{\prime} M^{\prime}$ is $x=a / e$
$P(x, y)$ is any point on the hyperbola and $P M$ is perpendicular to directrix ZM.

$
\begin{aligned}
& \frac{P S}{P M}=e \Rightarrow(P S)^2=e^2(P M)^2 \\
& (xa e)^2+(y0)^2=e^2\left(x\frac{a}{e}\right)^2 \\
& x^2+a^2 e^22 a e x+y^2=e^2 x^22 a e x+a^2 \\
& x^2\left(e^21\right)y^2=a^2\left(e^21\right) \\
& \frac{x^2}{a^2}\frac{y^2}{a^2\left(e^21\right)}=1 \\
& \frac{x^2}{a^2}\frac{y^2}{b^2}=1, \quad b^2=a^2\left(e^21\right)
\end{aligned}
$
The standard form of the equation of a hyperbola with centre $(0,0)$ and foci lying on the xaxis is

$
\frac{\mathrm{x}^2}{\mathrm{a}^2}\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1 \quad \text { where, } \mathrm{b}^2=\mathrm{a}^2\left(\mathrm{e}^21\right)
$

Important Terms related to Hyperbola:

Centre: All chord passing through point $O$ is bisected at point $O$. Here $O$ is the origin, i.e. $(0,0)$.
Foci: Point $S$ and $S^{\prime}$ is foci of the hyperbola where, $S$ is $(\mathrm{ae}, 0)$ and $S^{\prime}$ is $(\mathrm{ae}, 0)$.
Directrices: The straight line ZM and $Z^{\prime} M^{\prime}$ are two directrices of the hyperbola and their equations are $\mathrm{x}=\mathrm{ae}$ and $\mathrm{x}=\mathrm{ae}$.
Axis: In figure $A A^{\prime}$ is called the transverse axis and the line perpendicular to it through the centre of a hyperbola is called the conjugate axis. $2 a$ is the length of the transverse axis and $2 b$ is the length of the conjugate axis.
Double Ordinate: If a line perpendicular to the transverse axis of the hyperbola meets the curve at Q and $Q^{\prime}$, then $\mathrm{QQ}^{\prime}$ is called double ordinate.
Latus rectum: Double ordinate passing through focus is called latus rectum. Here $L L^{\prime}$ ans $L_1 L_1^{\prime}$ are two latusrectum of a hyperbola.

Eccentricity of Hyperbola: 

Equation of the hyperbola is $\frac{x^2}{a^2}\frac{y^2}{b^2}=1$ we have,

$
\begin{aligned}
& \mathrm{b}^2=\mathrm{a}^2\left(\mathrm{e}^21\right) \\
& \mathrm{e}^2=\frac{\mathrm{b}^2+\mathrm{a}^2}{\mathrm{a}^2} \\
& \mathrm{e}=\sqrt{1+\left(\frac{\mathrm{b}^2}{\mathrm{a}^2}\right)} \\
& \mathrm{e}=\sqrt{1+\left(\frac{2 \mathrm{~b}}{2 \mathrm{a}}\right)^2} \\
& \mathrm{e}=\sqrt{1+\left(\frac{\text { conjugate axis }}{\text { transverse axis }}\right)^2}
\end{aligned}
$

Focal Distance of a Point

The difference between the focal distance at any point of the hyperbola is constant and is equal to the length of the transverse axis of the hyperbola.

If $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is any point on the hyperbola.

$
\begin{aligned}
& \mathrm{SP}=\mathrm{ePM}=e\left(x_1\frac{a}{e}\right)=e x_1a \\
& \mathrm{~S}^{\prime} \mathrm{P}=\mathrm{eP}^{\prime} \mathrm{M}=e\left(x_1+\frac{a}{e}\right)=e x_1+a \\
& \left|\mathrm{~S}^{\prime} \mathrm{P}\mathrm{SP}\right|=\left|\mathrm{ex}_1+\mathrm{a}\mathrm{ex}_1+\mathrm{a}\right|=2 \mathrm{a}
\end{aligned}
$
 

Length of Latusrectum and Parametric Equation of Hyperbola

Length of Latusrectum and Parametric Equation of Hyperbola: 

Let Latusrectum $\mathrm{LL}^{\prime}=2 \alpha$
$\mathrm{S}(\mathrm{ae}, 0)$ is focus, then $\mathrm{LS}=\mathrm{SL}^{\prime}=\alpha$
Coordinates of L and $\mathrm{L}^{\prime}$ become (ae, $\alpha$ ) and (ae, $-\alpha$ ) respectively
Equation of hyperbola, $\quad \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$

$
\begin{aligned}
& \therefore \frac{(\mathrm{ae})^2}{\mathrm{a}^2}-\frac{\alpha^2}{\mathrm{~b}^2}=1 \Rightarrow \alpha^2=\mathrm{b}^2\left(\mathrm{e}^2-1\right) \\
& \alpha^2=\mathrm{b}^2\left(\frac{\mathrm{~b}^2}{\mathrm{a}^2}\right) \quad\left[\mathrm{b}^2=\mathrm{a}^2\left(\mathrm{e}^2-1\right)\right] \\
& \alpha=\frac{\mathrm{b}^2}{\mathrm{a}} \\
& \Rightarrow 2 \alpha=\mathrm{LL}^{\prime}=\frac{2 \mathrm{~b}^2}{\mathrm{a}}
\end{aligned}
$

End-points of a latus rectum :

For LR passing through $\mathrm{S}(\mathrm{ae}, 0): L\left(a e, \frac{b^2}{a}\right) ; L^{\prime}\left(a e,-\frac{b^2}{a}\right)$

For $L R$ passing through $S^{\prime}(-a e, 0)$ :

$
L_1\left(-a e, \frac{b^2}{a}\right) ; L_1^{\prime}\left(-a e,-\frac{b^2}{a}\right)
$

Parametric equation of Hyperbola:

The equations $x=a \sec \theta, y=b \tan \theta$ are called the parametric equation of the hyperbola
The circle with center $O(0,0)$ and $O A$ as the radius is called the auxiliary circle of the hyperbola.

Draw PN perpendicular to the x-axis axis and NQ be a tangent to the auxiliary circle. Let be $\angle \mathrm{QON}=\theta$ (This angle is also known as Eccentric Angle). Hence, the parametric equation of circle at point $\mathrm{Q}(\mathrm{a} \cos \theta, \mathrm{a} \sin \theta)$

now, $\mathrm{x}=\frac{\mathrm{ON}}{\mathrm{OQ}} \cdot \mathrm{OQ}=\sec \theta \cdot \mathrm{a}$

$
\begin{aligned}
& \mathrm{x}=\mathrm{a} \sec \theta \\
& \mathrm{P}=(\operatorname{asec} \theta, \mathrm{y})
\end{aligned}
$
P lies on the hyperbola

$
\begin{aligned}
& \frac{a^2 \sec ^2 \theta}{a^2}-\frac{y^2}{b^2}=1 \\
& y= \pm b \tan \theta
\end{aligned}
$
Point P is $(\mathrm{a} \sec \theta, \mathrm{b} \tan \theta)$

Conjugate Hyperbola

Conjugate Hyperbola

Corresponding to every hyperbola, there exists a hyperbola in which the conjugate and the transverse axes of one is equal to the transverse and conjugate axes of the other. Such types of hyperbolas are known as the conjugate hyperbola.

For the hyperbola

$
\frac{x^2}{a^2}-\frac{y^2}{b^2}=1
$
The conjugate hyperbola is

$
\frac{x^2}{a^2}-\frac{y^2}{b^2}=-1
$

Equation

\mathbf{\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1}

\mathbf{\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1}

Centre

(0 ,0)

(0, 0)

Vertices

(\pm \mathrm{a}, 0)

(0, \pm \mathrm{b})

Length of Transverse Axis

2a

2b

Length of conjugate Axis

2b

2a

Foci

(\pm \mathrm{ae},0)

(0, \pm \mathrm{be})

Distance b/w foci

2ae

2be

Equation of Directrices

\mathrm{x}=\pm \frac{\mathrm{a}}{\mathrm{e}}

\mathrm{y}=\pm \frac{\mathrm{b}}{\mathrm{e}}

Distance b/w Directrices

\frac{2 \mathrm{a}}{\mathrm{e}}

\frac{2 \mathrm{b}}{\mathrm{e}}

Eccentricity, e

\mathrm{e}=\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}}

\mathrm{e}=\sqrt{1+\frac{\mathrm{a}^{2}}{\mathrm{b}^{2}}}

Length of Latusrectum

\frac{2 b^{2}}{a}

\frac{2 a^{2}}{b}

Endpoint of Latusrectum

\left(\pm \mathrm{ae}, \pm \frac{\mathrm{b}^{2}}{\mathrm{a}}\right)

\left(\pm \frac{\mathrm{a}^{2}}{\mathrm{b}}, \pm \mathrm{be}\right)

Focal radii

|SP-S”P| = 2a

|SP-S”P| = 2b

Parametric coordinates

(\operatorname{asec} \theta, \text { b } \tan \theta), 0 \leq \theta \leq 2 \pi

(\operatorname{a\tan} \theta, \text { b } \sec \theta), 0 \leq \theta \leq 2 \pi

Tangent at vertices

x=\pm a

y=\pm b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Shifted Hyperbola

The standard form of the equation of a hyperbola with center $(h, k)$ and transverse axis parallel to the $x$-axis is

$
\frac{(\mathrm{x}-\mathrm{h})^2}{\mathrm{a}^2}-\frac{(y-k)^2}{b^2}=1
$

or

$
\begin{aligned}
& \frac{(\mathrm{X})^2}{\mathrm{a}^2}-\frac{(Y)^2}{b^2}=1 \\
& \mathrm{x}=\mathrm{X}+\mathrm{h} \quad \text { and } \mathrm{y}=\mathrm{Y}+\mathrm{k}
\end{aligned}
$

Origin is shifted to $(h, k)$.

Study it with Videos

What is Hyperbola?
Length of Latusrectum and Parametric Equation of Hyperbola
Conjugate Hyperbola

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top