UPES B.Tech Admissions 2025
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Spontaneity Criteria With Gibbs Energy (G) is considered one the most difficult concept.
Gibbs Energy And Change In Gibbs Energy is considered one of the most asked concept.
45 Questions around this concept.
For a particular reversible reaction at temperature were found to be both +Ve.
If is the temperature at equilibrium, the reaction would be spontaneous when
Standard entropy of are 60, 40 and 50 J K-1 mol-1, respectively. For the reaction,
to be at equilibrium, the temperature will be
In a fuel cell methanol is used as fuel and oxygen gas is used as an oxidizer. The reaction is
At 298 K standard Gibb’s energies of formation for
are –166.2, –237.2 and –394.4 kJ mol-1 respectively. If standard enthalpy of combustion of methanol is –726 kJ mol-1 , efficiency of the fuel cell will be
Also Check: Crack JEE Main 2025 - Join Our Free Crash Course Now!
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Study Plan 100 Days
The entropy change for a chemical reaction is given by:
Calculate the entropy change for the reaction:
Given the standard molar entropy
Consider a substance that undergoes a phase transition from a solid to a liquid at its melting point. The melting point of the substance is . The molar enthalpy of fusion is 10 kJ/mol, and the molar entropy of fusion is 30 J/(mol K).Calculate the change in Gibbs free energy for the phase transition at its melting point.
Consider a chemical reaction that takes place at 298 K and standard pressure:
The standard molar enthalpy change for the reaction is -400 kJ/mol. The standard molar entropy change for the reaction is 600 J/(mol·K).
Calculate the standard Gibbs free energy change for the reaction.
For the reactions,
$\begin{array}{ll}\mathrm{C}+\mathrm{O}_2 \rightarrow \mathrm{CO}_2 ; & \Delta \mathrm{H}=-393 \mathrm{~J} \\ 2 \mathrm{Zn}+\mathrm{O}_2 \rightarrow 2 \mathrm{ZnO} ; & \Delta H=-412 J\end{array}$
If an endothermic reaction is non-spontaneous at the freezing point of water and becomes feasible at its boiling point, then
For the reaction:
$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_2(\mathrm{~g})
$$
Given that the standard Gibbs free energy change $\Delta \mathrm{G}^{\circ}$ is $-150 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$ and the standard entropy change $\Delta \mathrm{S}^{\circ}$ is $150 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$, determine if the reaction is spontaneous at $25^{\circ} \mathrm{C}$.
Which of the following is not correct?
It was introduced in order to relate H, S and to explain spontaneity. According to J. Willard Gibb's Free energy of a system is defined as the maximum amount of energy available to a system during a process that can be converted into useful work.
or
It is the thermodynamic quantity specially characterizing the system, the decrease in whose value during a process is equal to the useful work done by the system.
It is denoted by G and it is given mathematically as follows:
$\mathrm{G}=\mathrm{H}-\mathrm{TS}$
Here,
H = Enthalpy
T = Absolute Temperature
S = Entropy
Also, we learnt that
$H=E+P V$
$\mathrm{G}=\mathrm{E}+\mathrm{PV}-\mathrm{TS}$
Therefore, Free energy change at constant temperature and pressure is given as:
$
\Delta \mathrm{G}=\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{~V}-\mathrm{T} \Delta \mathrm{~S}
$
As $\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{V}$
So, $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
At standard condition that is, 298 K and 1 atm pressure
$\Delta \mathrm{G}^{\mathrm{O}}=\Delta \mathrm{H}^{\mathrm{O}}-\mathrm{T} \Delta \mathrm{S}^{\circ}$
It is called Gibbs equation and it is used to explain criterion of spontaneity, driving force etc.
It is a state function and an extensive property.
Gibb's Free Energy change for a Reaction
For a general reaction, it can be given as follows:
$\begin{aligned} & \mathrm{pA}+\mathrm{qB} \rightarrow \mathrm{rC}+\mathrm{sD} \\ & \Delta \mathrm{G}^{\circ}=\sum \Delta \mathrm{G}_{\mathrm{P}}^{\circ}-\sum \Delta \mathrm{G}_{\mathrm{R}}^{\circ} \\ & =\left[\left(\mathrm{r} \sum \mathrm{G}_{\mathrm{C}}^{\circ}+\mathrm{s} \sum \Delta \mathrm{G}_{\mathrm{D}}^{\circ}\right)-\left(\mathrm{p} \cdot \sum \Delta \mathrm{G}_{\mathrm{A}}^{\circ}+\mathrm{q} \sum \Delta \mathrm{G}_{\mathrm{B}}^{\circ}\right)\right]\end{aligned}$
This requires the exact same treatment as $\Delta \mathrm{H}$ or $\Delta \mathrm{S}$
Gibb's Free Energy Change for small changes in a Reversible process
$\mathrm{G}=\mathrm{H}-\mathrm{TS}$
$\mathrm{dG}=\mathrm{dH}-\mathrm{TdS}-\mathrm{SdT} \quad \rightarrow(1)$
Now,
$\mathrm{dH}=\mathrm{dE}+\mathrm{PdV}+\mathrm{VdP} \quad \rightarrow(2)$
Using equations (1) and (2), we can write
$\mathrm{dG}=\mathrm{dE}+\mathrm{PdV}+\mathrm{VdP}-\mathrm{TdS}-\mathrm{SdT} \quad \rightarrow(3)$
Now,
$\mathrm{dE}=\mathrm{dq}+\mathrm{dw} ; \mathrm{dq}=\mathrm{TdS} ; \mathrm{dw}=-\mathrm{PdV}$
Putting these values in the above expression (3), we have
$\mathrm{dG}=\mathrm{VdP}-\mathrm{SdT}$
Note: Remember this important formula for small changes in dG values
$\Delta \mathrm{G}$ and Criteria of Spontaneity
Suppose we consider a system that is not isolated from its surroundings then for such a system $\Delta \mathrm{H}$ is given as:
$\Delta \mathrm{S}_{\text {total }}=\Delta \mathrm{S}_{\text {system }}+\Delta \mathrm{S}_{\text {surrounding }}$
If we consider that qp amount of heat is given by the system to the surroundings at constant temperature and constant pressure then
$\left(q_{\mathrm{p}}\right)_{\text {surroundings }}=-\left(\mathrm{q}_{\mathrm{p}}\right)_{\text {system }}=-\Delta \mathrm{H}_{\text {system }}$
$\Delta \mathrm{S}_{\text {surroundings }}=\frac{(\mathrm{q})_{\mathrm{p} \text { surroundings }}}{\mathrm{T}}=\frac{-\Delta \mathrm{H}_{\text {system }}}{\mathrm{T}} \ldots(i i)$
From equation (i) and (ii)
$\Delta \mathrm{S}_{\text {total }}=\Delta \mathrm{S}_{\text {system }}-\frac{\Delta \mathrm{H}_{\text {system }}}{\mathrm{T}}$
Or
$\mathrm{T} \Delta \mathrm{S}_{\text {total }}=\mathrm{T} \Delta \mathrm{S}_{\text {system }}-\Delta \mathrm{H}_{\text {system }}$
$-T \Delta \mathrm{~S}_{\text {total }}=\Delta \mathrm{H}_{\text {system }}-\mathrm{T} \Delta \mathrm{S}_{\text {system }}$
As according to Gibb-Helmholtz equation,
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
So, $\Delta \mathrm{G}_{\text {system }}=\Delta \mathrm{H}_{\text {system }}-\mathrm{T} \Delta \mathrm{S}_{\text {system }}$
$\Delta \mathrm{G}_{\text {system }}=-T \Delta \mathrm{~S}_{\text {total }}$
As for the spontaneous process
$\Delta S_{\text {total }}>0$
Hence $\Delta \mathrm{G}=-\mathrm{ve}$
Thus for a spontaneous process $\mathrm{T} \Delta \mathrm{S}_{\text {total }}$ must be positive.
Or $\Delta \mathrm{G}$ must be negative.
Case I. Suppose both energy and entropy factors oppose a process that is,
$\Delta \mathrm{H}=+\mathrm{ve}$ and $\mathrm{T} \Delta \mathrm{S}=-\mathrm{ve}$
$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}=(+\mathrm{ve})-(-\mathrm{ve})=+\mathrm{ve}$
Thus, $\Delta G$ is positive for a non-spontaneous process.
Case II. Suppose both tendencies are equal in magnitude but opposite, that is,
$\begin{aligned} \Delta \mathrm{H} & =+\mathrm{ve} \text { and } \mathrm{T} \Delta \mathrm{S}=+\mathrm{ve} \\ \Delta \mathrm{H} & =\mathrm{T} \Delta \mathrm{S} \\ \Delta \mathrm{G} & =\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}=0\end{aligned}$
Thus, the process is said to be at equilibrium.
Case III. Suppose entropy and energy, both factors are favorable for a process, that is,
$\begin{aligned} & \Delta \mathrm{H}=-\mathrm{ve} \text { and } \mathrm{T} \Delta \mathrm{S}=+\mathrm{ve} \\ & \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}=(-\mathrm{ve})-(+\mathrm{ve})=-\mathrm{ve}\end{aligned}$
Thus, this process is spontaneous at every temperature.
$\Delta H$ | $\Delta S$ | $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ |
Remark |
- |
+ |
Always -ve |
Spontaneous |
+ |
- |
Always +ve |
Non-spontaneous |
+ |
+ |
+ ve at low temp |
Non-spontaneous |
- ve at a high temp |
Spontaneous |
||
- |
- |
- ve at low temp |
Spontaneous |
+ ve at a high temp |
Non-spontaneous |
$\Delta \mathrm{G}=$ negative, Spontaneous process
$\Delta \mathrm{G}=$ positive, Non-spontaneous process
$\Delta \mathrm{G}=$ 0 , Process in equilibrium
In exergonic reaction $\Delta \mathrm{G}=$ negative
In endergonic reaction $\Delta \mathrm{G}=$ positive
Temperature also plays an important role to decide the spontaneity of a process. A process that is not spontaneous at low temperature can become spontaneous at high temperature and vice-versa.
Relationship between $\Delta \mathbf{G}^{\circ}$ and Equilibrium constant $\left(\mathbf{K}_{\mathrm{eq}}\right)$
for a reversible reaction
$
\mathrm{P}+\mathrm{Q} \rightleftharpoons \mathrm{R}+\mathrm{S}
$
$\Delta \mathrm{G}, \Delta \mathrm{G}^{\circ}$ and Reaction Quotient (Q) are related as follows
$
\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \log _{\mathrm{e}} \mathrm{Q}
$
as at equilibrium $\Delta \mathrm{G}=0$
$\begin{aligned} & \mathrm{Q}=\mathrm{Keq} \\ & 0=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \log _{\mathrm{e}} \mathrm{Keq} \\ & \Delta \mathrm{G}^{\circ}=-\mathrm{RT} \log _{\mathrm{e}} \mathrm{Keq} \\ & \Delta \mathrm{G}^{\circ}=-2.303 \mathrm{RT} \log _{10} \mathrm{Keq}\end{aligned}$
Relationship between $\Delta G$ or $\Delta G^o$ with E or $E^o$:-
Free energy change $\Delta G$ in an electrochemical cell can be related to electrical work done (E) in cell as follows
$\Delta G=-n F E$
when we use standard conditions than
$\Delta G^o=-n F E^o$
Here $E^o$= standard E.M.F of the cell
n = No. of moles of e- transferred
F = Faraday's constant
"Stay in the loop. Receive exam news, study resources, and expert advice!"