JEE Main 2025 Admit Card Released for January 22, 23, 24 - Check How to Download

Gibbs Energy Change And Criteria For Equilibrium - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:35 AM | #JEE Main

Quick Facts

  • Spontaneity Criteria With Gibbs Energy (G) is considered one the most difficult concept.

  • Gibbs Energy And Change In Gibbs Energy is considered one of the most asked concept.

  • 53 Questions around this concept.

Solve by difficulty

For a particular reversible reaction at temperature  T,\Delta H\: and \: \Delta S\: were found to be both +Ve.

If T_{e} is the temperature at equilibrium, the reaction would be spontaneous when

Standard entropy of \mathrm{ X_{2},Y_{2}\; and\; XY_{3}}  are 60, 40 and 50 J K-1 mol-1, respectively. For the reaction,

\mathrm{\frac{1}{2} X_{2}+\frac{3}{2} Y_{2}\rightarrow XY_{3},\; \Delta H=-30\, kJ} to be at equilibrium, the temperature will be

The entropy change \mathrm{(\Delta S)} for a chemical reaction is given by:
\mathrm{\Delta S=\sum n_{i} \cdot S_{i, \text { products }}-\sum n_{j} \cdot S_{j, \text { reactants }}}

Calculate the entropy change for the reaction:

\mathrm{2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{SO}_{3}(g)}
Given the standard molar entropy \mathrm{\left(S^{\circ}\right) values: }
S^{\circ}\left(\mathrm{SO}_{2}\right)=248.15 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}
S^{\circ}\left(\mathrm{O}_{2}\right)=205.15 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}
$ $S^{\circ}\left(\mathrm{SO}_{3}\right)=256.2 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}

Consider a substance that undergoes a phase transition from a solid to a liquid at its melting point. The melting point of the substance is \mathrm{100^{\circ}C}. The molar enthalpy of fusion \mathrm{\left(\Delta H_{\text {fusion }}\right)} is 10 kJ/mol, and the molar entropy of fusion \mathrm{\left(\Delta S_{\text {fusion }}\right)} is 30 J/(mol K).Calculate the change in Gibbs free energy \mathrm{(\Delta G)} for the phase transition at its melting point.

Consider a chemical reaction that takes place at 298 K and standard pressure:

\mathrm{A(g)+2 B(g) \rightarrow C(g)+D(g)}

The standard molar enthalpy change \mathrm{(\Delta H^{\circ})} for the reaction is -400 kJ/mol. The standard molar entropy change \mathrm{(\Delta S^{\circ})} for the reaction is 600 J/(mol·K).
Calculate the standard Gibbs free energy change \mathrm{(\Delta G^{\circ})} for the reaction.

 

For the chemical reaction $X \rightleftharpoons Y$, the standard reaction Gibbs energy depends on temperature T (in K ) as

$
\Delta_r G^0\left(\text { in } k j m o l^{-1}\right)=120-\frac{3}{8} T
$


The major component of the reaction mixture at T is:

 

For the reactions,

$\begin{array}{ll}\mathrm{C}+\mathrm{O}_2 \rightarrow \mathrm{CO}_2 ; & \Delta \mathrm{H}=-393 \mathrm{~J} \\ 2 \mathrm{Zn}+\mathrm{O}_2 \rightarrow 2 \mathrm{ZnO} ; & \Delta H=-412 J\end{array}$

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements

Amrita Vishwa Vidyapeetham | B.Tech Admissions 2025

Recognized as Institute of Eminence by Govt. of India | NAAC ‘A++’ Grade | Upto 75% Scholarships | Last Date to Apply: 25th Jan

If an endothermic reaction is non­-spontaneous at the freezing point of water and becomes feasible at its boiling point, then

For the reaction:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{O}_2(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_2(\mathrm{~g})
$$
Given that the standard Gibbs free energy change $\Delta \mathrm{G}^{\circ}$ is $-150 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$ and the standard entropy change $\Delta \mathrm{S}^{\circ}$ is $150 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$, determine if the reaction is spontaneous at $25^{\circ} \mathrm{C}$.

JEE Main Exam's High Scoring Chapters and Topics
This free eBook covers JEE Main important chapters & topics to study just 40% of the syllabus and score up to 100% marks in the examination.
Download EBook

Which of the following is not correct?

Concepts Covered - 3

Gibbs Energy And Change In Gibbs Energy

It was introduced in order to relate H, S and to explain spontaneity. According to J. Willard Gibb's Free energy of a system is defined as the maximum amount of energy available to a system during a process that can be converted into useful work. 

or 

It is the thermodynamic quantity specially characterizing the system, the decrease in whose value during a process is equal to the useful work done by the system. 

 

It is denoted by G and it is given mathematically as follows: 

$\mathrm{G}=\mathrm{H}-\mathrm{TS}$

Here,

H = Enthalpy

T = Absolute Temperature

S = Entropy

Also, we learnt that 

$H=E+P V$

$\mathrm{G}=\mathrm{E}+\mathrm{PV}-\mathrm{TS}$

 

Therefore, Free energy change at constant temperature and pressure is given as:

$
\Delta \mathrm{G}=\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{~V}-\mathrm{T} \Delta \mathrm{~S}
$


As $\Delta \mathrm{H}=\Delta \mathrm{E}+\mathrm{P} \Delta \mathrm{V}$
So, $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$

At standard condition that is, 298 K and 1 atm pressure

$\Delta \mathrm{G}^{\mathrm{O}}=\Delta \mathrm{H}^{\mathrm{O}}-\mathrm{T} \Delta \mathrm{S}^{\circ}$

It is called Gibbs equation and it is used to explain criterion of spontaneity, driving force etc.

It is a state function and an extensive property. 

 

Gibb's Free Energy change for a Reaction

For a general reaction, it can be given as follows: 

$\begin{aligned} & \mathrm{pA}+\mathrm{qB} \rightarrow \mathrm{rC}+\mathrm{sD} \\ & \Delta \mathrm{G}^{\circ}=\sum \Delta \mathrm{G}_{\mathrm{P}}^{\circ}-\sum \Delta \mathrm{G}_{\mathrm{R}}^{\circ} \\ & =\left[\left(\mathrm{r} \sum \mathrm{G}_{\mathrm{C}}^{\circ}+\mathrm{s} \sum \Delta \mathrm{G}_{\mathrm{D}}^{\circ}\right)-\left(\mathrm{p} \cdot \sum \Delta \mathrm{G}_{\mathrm{A}}^{\circ}+\mathrm{q} \sum \Delta \mathrm{G}_{\mathrm{B}}^{\circ}\right)\right]\end{aligned}$

This requires the exact same treatment as $\Delta \mathrm{H}$ or $\Delta \mathrm{S}$

 

Gibb's Free Energy Change for small changes in a Reversible process

$\mathrm{G}=\mathrm{H}-\mathrm{TS}$

$\mathrm{dG}=\mathrm{dH}-\mathrm{TdS}-\mathrm{SdT} \quad \rightarrow(1)$

Now, 

$\mathrm{dH}=\mathrm{dE}+\mathrm{PdV}+\mathrm{VdP} \quad \rightarrow(2)$

Using equations (1) and (2), we can write

$\mathrm{dG}=\mathrm{dE}+\mathrm{PdV}+\mathrm{VdP}-\mathrm{TdS}-\mathrm{SdT} \quad \rightarrow(3)$

Now, 

$\mathrm{dE}=\mathrm{dq}+\mathrm{dw} ; \mathrm{dq}=\mathrm{TdS} ; \mathrm{dw}=-\mathrm{PdV}$

Putting these values in the above expression (3), we have 

$\mathrm{dG}=\mathrm{VdP}-\mathrm{SdT}$

Note: Remember this important formula for small changes in dG values 

Spontaneity Criteria With Gibbs Energy (G)

$\Delta \mathrm{G}$ and Criteria of Spontaneity

Suppose we consider a system that is not isolated from its surroundings then for such a system $\Delta \mathrm{H}$ is given as:

$\Delta \mathrm{S}_{\text {total }}=\Delta \mathrm{S}_{\text {system }}+\Delta \mathrm{S}_{\text {surrounding }}$

If we consider that qp amount of heat is given by the system to the surroundings at constant temperature and constant pressure then 

 $\left(q_{\mathrm{p}}\right)_{\text {surroundings }}=-\left(\mathrm{q}_{\mathrm{p}}\right)_{\text {system }}=-\Delta \mathrm{H}_{\text {system }}$

$\Delta \mathrm{S}_{\text {surroundings }}=\frac{(\mathrm{q})_{\mathrm{p} \text { surroundings }}}{\mathrm{T}}=\frac{-\Delta \mathrm{H}_{\text {system }}}{\mathrm{T}} \ldots(i i)$

From equation (i) and (ii)

$\Delta \mathrm{S}_{\text {total }}=\Delta \mathrm{S}_{\text {system }}-\frac{\Delta \mathrm{H}_{\text {system }}}{\mathrm{T}}$

Or

$\mathrm{T} \Delta \mathrm{S}_{\text {total }}=\mathrm{T} \Delta \mathrm{S}_{\text {system }}-\Delta \mathrm{H}_{\text {system }}$

$-T \Delta \mathrm{~S}_{\text {total }}=\Delta \mathrm{H}_{\text {system }}-\mathrm{T} \Delta \mathrm{S}_{\text {system }}$

As according to Gibb-Helmholtz equation,

$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$

So, $\Delta \mathrm{G}_{\text {system }}=\Delta \mathrm{H}_{\text {system }}-\mathrm{T} \Delta \mathrm{S}_{\text {system }}$

$\Delta \mathrm{G}_{\text {system }}=-T \Delta \mathrm{~S}_{\text {total }}$

As for the spontaneous process

$\Delta S_{\text {total }}>0$

Hence  $\Delta \mathrm{G}=-\mathrm{ve}$

Thus for a spontaneous process $\mathrm{T} \Delta \mathrm{S}_{\text {total }}$ must be positive.

Or $\Delta \mathrm{G}$ must be negative.

 

Case I.  Suppose both energy and entropy factors oppose a process that is,

$\Delta \mathrm{H}=+\mathrm{ve}$ and $\mathrm{T} \Delta \mathrm{S}=-\mathrm{ve}$

$\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}=(+\mathrm{ve})-(-\mathrm{ve})=+\mathrm{ve}$ 

Thus, $\Delta G$ is positive for a non-spontaneous process.

 

  Case II.  Suppose both tendencies are equal in magnitude but opposite, that is,

$\begin{aligned} \Delta \mathrm{H} & =+\mathrm{ve} \text { and } \mathrm{T} \Delta \mathrm{S}=+\mathrm{ve} \\ \Delta \mathrm{H} & =\mathrm{T} \Delta \mathrm{S} \\ \Delta \mathrm{G} & =\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}=0\end{aligned}$

Thus, the process is said to be at equilibrium.

 

Case III.  Suppose entropy and energy, both factors are favorable for a process, that is,

$\begin{aligned} & \Delta \mathrm{H}=-\mathrm{ve} \text { and } \mathrm{T} \Delta \mathrm{S}=+\mathrm{ve} \\ & \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}=(-\mathrm{ve})-(+\mathrm{ve})=-\mathrm{ve}\end{aligned}$

Thus, this process is spontaneous at every temperature.


 

$\Delta H$ $\Delta S$ $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$

Remark

-

+

Always -ve

Spontaneous

+

-

Always +ve

Non-spontaneous

+

+

+ ve at low temp

Non-spontaneous

- ve at a high temp

Spontaneous

-

-

- ve at low temp

Spontaneous

+ ve at a high temp

Non-spontaneous

 

  • $\Delta \mathrm{G}=$ negative,  Spontaneous process

  • $\Delta \mathrm{G}=$ positive, Non-spontaneous process

  • $\Delta \mathrm{G}=$ 0 , Process in equilibrium

 

  • In exergonic reaction $\Delta \mathrm{G}=$ negative

  • In endergonic reaction $\Delta \mathrm{G}=$ positive

  • Temperature also plays an important role to decide the spontaneity of a process. A process that is not spontaneous at low temperature can become spontaneous at high temperature and vice-versa.


 

Gibbs Energy At Equilibrium

Relationship between $\Delta \mathbf{G}^{\circ}$ and Equilibrium constant $\left(\mathbf{K}_{\mathrm{eq}}\right)$

for a reversible reaction

$
\mathrm{P}+\mathrm{Q} \rightleftharpoons \mathrm{R}+\mathrm{S}
$
 

$\Delta \mathrm{G}, \Delta \mathrm{G}^{\circ}$ and Reaction Quotient (Q) are related as follows

$
\Delta \mathrm{G}=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \log _{\mathrm{e}} \mathrm{Q}
$

as at equilibrium $\Delta \mathrm{G}=0$

$\begin{aligned} & \mathrm{Q}=\mathrm{Keq} \\ & 0=\Delta \mathrm{G}^{\circ}+\mathrm{RT} \log _{\mathrm{e}} \mathrm{Keq} \\ & \Delta \mathrm{G}^{\circ}=-\mathrm{RT} \log _{\mathrm{e}} \mathrm{Keq} \\ & \Delta \mathrm{G}^{\circ}=-2.303 \mathrm{RT} \log _{10} \mathrm{Keq}\end{aligned}$

 

Relationship between $\Delta G$ or $\Delta G^o$ with E or $E^o$:-

Free energy change $\Delta G$ in an electrochemical cell can be related to electrical work done (E) in cell as follows 

$\Delta G=-n F E$

when we use standard conditions than 

$\Delta G^o=-n F E^o$

Here $E^o$= standard E.M.F of the cell

n = No. of moles of e- transferred 

F = Faraday's constant

 

Study it with Videos

Gibbs Energy And Change In Gibbs Energy
Spontaneity Criteria With Gibbs Energy (G)
Gibbs Energy At Equilibrium

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Gibbs Energy And Change In Gibbs Energy

Chemistry Part I Textbook for Class XI

Page No. : 184

Line : 15

Spontaneity Criteria With Gibbs Energy (G)

Chemistry Part I Textbook for Class XI

Page No. : 184

Line : 1

E-books & Sample Papers

Get Answer to all your questions

Back to top