JEE Main Cutoff for IIIT Srirangam 2024 - Check Here

Isothermal Expansion of an Ideal Gas - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:35 AM | #JEE Main

Quick Facts

  • Isothermal Reversible And Isothermal Irreversible is considered one the most difficult concept.

  • 16 Questions around this concept.

Solve by difficulty

What will be the magnitude of work done when at \mathrm{STR,\ 3.2 \mathrm{~g}} of oxygen is expanded to occupy for times its original volume?

What will be \mathrm{\Delta E} if at \mathrm{500 K}, I mole of an ideal gas was isothermally expanded from \mathrm{1L} to \mathrm{2L} ?

A gas sample occupies \mathrm{ 2.5 \mathrm{~L}} at \mathrm{ 27^{\circ} \mathrm{C}} and 1 bar pressure. If the gas undergoes an isothermal expansion to \mathrm{ 10 \mathrm{~L}}, what is the final pressure?

A gas of amount 0.2 mole undergoes a reversible isothermal compression at a constant temperature of 300 \mathrm{~K}. The gas is compressed from an initial volume of 10 liters to a final volume of 5 liters. Calculate the work done on the gas during the process.

A sample of one mole of a diatomic ideal gas initially occupies a volume of 8 liters at a temperature of 400 \mathrm{~K}. The gas is allowed to expand isothermally to a final volume of 20 liters. Calculate:
 

Concepts Covered - 1

Isothermal Reversible And Isothermal Irreversible

Isothermal reversible and irreversible 

Let us consider a cylinder fitted with a frictionless and weightless piston having an area of cross-section as 'A'. If the extemal pressure (P) is applied on this piston and the value of P is slightly less than that of the internal pressure of the gas When the gas undergoes a little expansion and the piston is pushed out by a small distance dx the work done by the gas on the piston is given by as

$\begin{aligned} & \mathrm{dw}=\text { force } \times \text { distance }=\text { pressure } \times \text { area } \times \text { distance } \\ & d w=P A \cdot d x \\ & \text { As A.dx }=\mathrm{dV} \\ & \mathrm{dw}=\mathrm{PdV}\end{aligned}$

When the volume of the gas changes from $\mathrm{V}_1-\mathrm{V}_2$, the total work done $(\mathrm{W})$ can be given as $\mathrm{W}=\mathrm{P} . \int \cdot \mathrm{dV}$
If we consider the external pressure $(\mathrm{P})$ to be constant than

$
\begin{aligned}
& \mathrm{W}=\mathrm{P} \int^{\mathrm{d}} \mathrm{~V}=\mathrm{P}\left(\mathrm{~V}_2-\mathrm{V}_1\right)=\mathrm{P} \cdot \Delta \mathrm{~V} \\
& \mathrm{~W}=\mathrm{P} \cdot \Delta \mathrm{~V}
\end{aligned}
$
 

Isothermal irreversible expansion of an ideal gas

When a gas expands against a constant external  $\left(P_{\text {ext }}=\right.$ constant $)$. There is a considerable difference between the gas pressure (inside the cylinder) and the external pressure. The temperature does not change during the process.

$\mathrm{W}=-\int_{\mathrm{V}_1}^{\mathrm{V}_2} \mathrm{P}_{\mathrm{ext}} \mathrm{dV}$

$\begin{aligned} & =-P_{\text {ext }} \int_{V_1}^{V_2} \\ & =-P_{\text {ext }}\left(V_2-V_1\right) \\ W & =-P_{\text {ext }} \cdot \Delta V\end{aligned}$

Work done in Isothermal reversible expansion of an ideal gas 

As a small amount of work done dW on the reversible expansion of a gas through a small volume dV against an external pressure 'P' can be given as

$d W=-P d V$

So the total work done when the gas expands from initial volume V1 to final volume V2 is given as

$\int d W=\int_{v_1}^{v_2}-P d V$

As according to ideal gas equation $\mathrm{PV}=\mathrm{nRT}$

$
P=\frac{n R T}{V}
$
 

So $W_{\text {rev }}=\int \frac{n R T}{V} d V \quad$ (as temp. is constant)
So $\mathrm{W}_{\mathrm{rev}}=-\mathrm{nRT} \ln \frac{\mathrm{V}_2}{\mathrm{~V}_1}$

$
\begin{aligned}
& \mathrm{W}_{\mathrm{rev}}=-2.303 \mathrm{nRT} \log _{10} \frac{\mathrm{~V}_2}{\mathrm{~V}_1} \\
& \mathrm{~W}_{\mathrm{rev}}=-2.303 \mathrm{nRT} \log _{10} \frac{\mathrm{P}_1}{\mathrm{P}_2}
\end{aligned}
$
 

Here negative sign indicates work of expansion and it is generally greater than work in the irreversible process

As in such a case, the temperature is kept constant and internal energy depends only on temperature so it internal energy is constant.

$\begin{aligned} & \text { So } \Delta E=0 \\ & \Delta E=q+W \\ & q=-W\end{aligned}$

Hence, during isothermal expansion, work is done by the system at the expense of heat absorbed.

Here $\Delta \mathrm{H}$ can be found out as follows:

$\Delta \mathrm{H}=\Delta \mathrm{E}+\Delta \mathrm{n}_{\mathrm{g}} \mathrm{RT}$

As, for isothermal process, $\Delta E=0, \Delta T=0$ So $\Delta H=0$

Study it with Videos

Isothermal Reversible And Isothermal Irreversible

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Isothermal Reversible And Isothermal Irreversible

Chemistry Part I Textbook for Class XI

Page No. : 168

Line : 32

E-books & Sample Papers

Get Answer to all your questions

Back to top