Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
68 Questions around this concept.
$
\text { The mid-point of chord } x+y=1 \text { of the circle } x^2+y^2=4 \text { is }
$
The image of the point (3,5) in the line $x-y+1=0$, lies on :
Locus of the image of the point (2, 3) in the line
$(2x-3y+4)+k(x-2y+3)=0,k\, \epsilon \, R,\, is\,\, a\,$
$\int \frac{d x}{\sin (x-a) \sin (x-b)}$ is equal to
Foot of Perpendicular
Foot of perpendicular of $P\left(x_1, y_1\right)$ on the line $A B$ : $a x+b y+c=0$ is $M\left(x_2, y_2\right)$. then
$
\frac{\mathrm{x}_2-\mathrm{x}_1}{\mathbf{a}}=\frac{\mathrm{y}_2-\mathrm{y}_1}{\mathbf{b}}=-\frac{\left(\mathrm{ax}_1+\mathrm{by}_1+\mathrm{c}\right)}{\left(\mathrm{a}^2+\mathrm{b}^2\right)}
$
Proof:
Let the coordinate of foot of perpendicular be $M\left(x_2, y_2\right)$. Then, point $M$ lies on the line $A B$.
$
\begin{aligned}
& \Rightarrow \quad \quad \mathrm{ax}_2+\mathrm{by}_2+\mathrm{c}=0 \\
& \text { and, } \quad \because \quad \text { PM } \perp \mathrm{AB} \\
& \text { then, }(\text { slope of PM) }(\text { slope of } \mathrm{AB})=-1 \\
& \Rightarrow \quad\left(\frac{\mathrm{y}_2-\mathrm{y}_1}{\mathrm{x}_2-\mathrm{x}_1}\right)\left(-\frac{\mathrm{a}}{\mathrm{~b}}\right)=-1 \\
& \text { or } \quad \frac{\mathrm{x}_2-\mathrm{x}_1}{\mathrm{a}}=\frac{\mathrm{y}_2-\mathrm{y}_1}{\mathrm{~b}}
\end{aligned}
$
Using ratio and proportion
$
\begin{aligned}
& \frac{x_2-x_1}{a}=\frac{y_2-y_1}{b}=\frac{a\left(x_2-x_1\right)+b\left(y_2-y_1\right)}{a^2+b^2} \\
& \frac{x_2-x_1}{a}=\frac{y_2-y_1}{b}=-\frac{\left(a x_1+b y_1+c\right)}{a^2+b^2}
\end{aligned}
$
(Using (i))
Image of a Point about a Line
$\mathrm{Q}\left(\mathrm{x}_2, \mathrm{y}_2\right)$ is the image of a point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ about a line $\mathrm{L}: \mathrm{ax}+\mathrm{by}+\mathrm{c}=0$. To find the coordinates of point $Q$, first find the coordinates of the foot of perpendicular $M$ drawn from the point $P\left(x_1, y_1\right)$ on the line $L$ and use the concept that point $M$ is the midpoint of point $P\left(x_1, y_1\right)$ and point $Q\left(x_2, y_2\right)$.
OR
If the Image of $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ on the line $\mathrm{L}: \mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ is $\mathrm{Q}\left(\mathrm{x}_2, \mathrm{y}_2\right)$, then
$
\frac{\mathrm{x}_2-\mathrm{x}_1}{\mathbf{a}}=\frac{\mathrm{y}_2-\mathrm{y}_1}{\mathbf{b}}=-\frac{2\left(\mathrm{ax}_1+\mathrm{by}_1+\mathrm{c}\right)}{\left(\mathrm{a}^2+\mathrm{b}^2\right)}
$
Image of a point in some standard lines
1. Image of $P(h, k)$ with respect to $X$-axis is $Q=(h,-k)$
2. Image of $\mathrm{P}(\mathrm{h}, \mathrm{k})$ with respect to Y -axis is $\mathrm{Q}=(-\mathrm{h}, \mathrm{k})$
3. Image of $P(h, k)$ with respect to the line $x=y$ is $Q=(k, h)$
Reflection of Light
Laws of reflection
1. The incident ray, the normal ray and the reflected ray to a surface at the point of an incident all lie on the same plane.
2. The angle of incident = angle of reflection
$
\angle \mathrm{i}=\angle \mathrm{r}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"