VIT - VITEEE 2025
National level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!
Faraday's law of induction is considered one the most difficult concept.
92 Questions around this concept.
The flux linked with a coil at any instant t is given by = 10t2 - 50t + 250. The induced emf (in Volts) at t = 3s is
The figure shows three regions of the magnetic field, each of area A, and in each region magnitude of the magnetic field decreases at a constant rate a. If
A small circular loop of wire of radius a is located at the center of a much larger circular wire loop of radius b. The two loops are in the same plane. The outer loop of radius b carries an alternating current I=Io cos (ωt). The emf induced in the smaller inner loop is nearly :
JEE Main 2025: City Slip Link | Study Plan | Official Question Paper (Session 1)
JEE Main 2025: Sample Papers | Mock Tests | PYQs | High Scoring Topics | College Predictor
New: Meet Careers360 experts in your city and get guidance on shortlisting colleges
Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT
In the figure shown a square loop PQRS of side 'a' and resistance 'r' is placed near an infinitely long wire carrying a constant current I. The sides PQ and RS are parallel to the wire. The wire and the loop are in the same plane. The loop is rotated by 180º about an axis parallel to the long wire and passing through the midpoints of the side QR and PS. The total amount of charge which passes through any point of the loop during rotation is :
The magnetic induction at the centre O in Fig shown is
A coil is placed in magnetic field such that plane of coil is perpendicular to the direction of magnetic field. The magnetic flux through a coil can be changed:
A. By changing the magnitude of the magnetic field within the coil.
B. By changing the area of coil within the magnetic field.
C. By changing the angle between the direction of magnetic field and the plane of the coil.
D. By reversing the magnetic field direction abruptly without changing its magnitude.
Choose the most appropriate answer from the options given below :
According to the 'Flemings left hand rule' direction of motion of charge is indicated by the direction of-
National level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements | Last Date to Apply: 28th March
When a conducting loop is moved in a magnetic field then the total charge induced depends on -
A conducting circular loop is placed in a uniform magnetic field
A circular coil expands radially in a region of magnetic field and no electromotive force is produced in the coil. This can be because
(a) the magnetic field is constant.
(b) the magnetic field is in the same plane as the circular coil and it may or may not vary.
(c) the magnetic field has a perpendicular (to the plane of the coil) component whose magnitude is decreasing suitably.
(d) there is a constant magnetic field in the perpendicular (to the plane of the coil) direction.
Faraday’s First Law-
Whenever the number of magnetic lines of force (Magnetic Flux) passing through a circuit changes an emf called induced emf is produced in the circuit. The induced emf persists only as long as there is a change of flux.
Faraday’s Second Law-
The induced emf is given by the rate of change of magnetic flux linked with the circuit.
i.e Rate of change of magnetic Flux
where
And For N turns it is given as
The negative sign indicates that induced emf (e) opposes the change of flux. And this Flux may change with time in several ways
I.e As
1.If Area (A) change then
2.If Magnetic field (B) change then
3. If Angle (
where
- Induced Charge-
I.e Induced Charge time-independent.
- Induced Power-
i.e - Induced Power depends on both time and resistance
"Stay in the loop. Receive exam news, study resources, and expert advice!"