UPES B.Tech Admissions 2025
ApplyRanked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Equation of the Tangent in Point Form is considered one of the most asked concept.
69 Questions around this concept.
Equation of the tangent to the circle, at the point $(1,-1)$, whose centre is the point of intersection of the straight lines $x-y=1$ and $2 x+y=3$ is :
The range of values of for which the circle and have two common tangents is
The number of common tangents that can be drawn to the circle is
Also Check: Crack JEE Main 2025 - Join Our Free Crash Course Now!
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Study Plan 100 Days
Equation of the Tangent in Point Form
Point Form
The equation of the tangent to a circle $x^2+y^2+2 g x+2 f y+c=0$ at the point $P\left(x_1, y_1\right)$ is $x x_1+y y_1+g\left(x+x_1\right)+f\left(y+y_1\right)+c=0$
Proof:
$\mathrm{C}(-\mathrm{g},-\mathrm{f})$ is the centre of the circle
As point $\mathrm{P}\left(x_1, y_1\right)$ lies on the circle.
$\therefore \quad$ Slope of CP $=\frac{\mathrm{y}_1-(-\mathrm{f})}{\mathrm{x}_1-(-\mathrm{g})}=\frac{\mathrm{y}_1+\mathrm{f}}{\mathrm{x}_1+\mathrm{g}}$
Here, PT is the perpendicular to CP.
Thus, $\quad$ slope of $\mathrm{PT}=-\left(\frac{\mathrm{x}_1+\mathrm{g}}{\mathrm{y}_1+\mathrm{f}}\right)$
Hence, the equation of the tangent at $\mathrm{P}\left(x_1, y_1\right)$ is
$
\begin{gathered}
\left(y-y_1\right)=-\left(\frac{x_1+g}{y_1+f}\right)\left(x-x_1\right) \\
\Rightarrow \quad\left(y-y_1\right)\left(y_1+f\right)+\left(x_1+g\right)\left(x-x_1\right)=0 \\
\Rightarrow \quad x_1+y_1+g x+f y=x_1^2+y_1^2+g x_1+\mathrm{fy}_1
\end{gathered}
$
now add $\mathrm{gx}_1+\mathrm{fy}_1+\mathrm{c}$ both side, we get
i.e. $\quad x_1+y_1+g\left(x+x_1\right)+f\left(y+y_1\right)+c=0$
(As, point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ lies on the circle so, $\mathrm{x}_1^2+\mathrm{y}_1^2+2 \mathrm{gx}_1+2 \mathrm{fy}_1+\mathrm{c}=0$ )
NOTE:
In order to find out the equation of a tangent to any 2nd-degree curve, the following points must be kept in mind:
$x^2$ is replaced by $x x_1$
$y^2$ is replaced by $y y_1$
$x y$ is replaced by $\frac{x y_1+x_1 y}{2}$
$x$ is replaced by $\frac{x+x_1}{2}$
$y$ is replaced by $\frac{y+y_1}{2}$
and c will remain c .
This method is applicable only for a 2nd degree conic.
Equation of Tangent of Circle in Parametric Form
The equation of the tangent at the point $(\mathrm{a} \cos \theta, \mathrm{a} \sin \theta)$ to a circle $\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2$ is $\mathbf{x} \cos \theta+\mathrm{y} \sin \theta=\mathbf{a}$
Proof:
If $S=x^2+y^2-a^2=0$ is the circle, then the tangent at $\left(x_1, y_1\right)$ is $T_1=$ $\mathrm{xx}_1+\mathrm{yy}_1-\mathrm{a}^2=0$
put , $\mathrm{x}_1=\mathrm{a} \cos \theta, \quad \mathrm{y}_1=\mathrm{a} \sin \theta$
we get, $\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=\mathrm{a}$
Slope Form
The equation of the tangent to a circle $\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}_{\text {having slope } \mathrm{m} \text { is } \mathbf{y}=\mathbf{m x} \pm \mathbf{a} \sqrt{\left(\mathbf{1 + \mathbf { m } ^ { 2 } )}\right.} \text {, and point of tangency is }}^{\left( \pm \frac{a m}{\sqrt{\left(1+m^2\right)}}, \mp \frac{a}{\sqrt{\left(1+m^2\right)}}\right) .}$
Let $y=m x+c$ be a tangent to the circle $x^2+y^2=a^2$.
$\therefore \quad$ Length of perpendicular from centre of circle $(0,0)$
on $(y=m x+c)=$ radius of circle
$
\therefore \quad \frac{|c|}{\sqrt{1+\mathrm{m}^2}}=\mathrm{a} \Rightarrow \mathrm{c}= \pm \mathrm{a} \sqrt{1+\mathrm{m}^2}
$
substituting this value of $c$ in $y=m x+c$, we get $\mathbf{y}=\mathbf{m x} \pm \mathbf{a} \sqrt{\left(\mathbf{1}+\mathbf{m}^2\right)}$
which are the required equations of tangents.
Corollary : It also follows that $y=m x+c$ is a tangent to $x^2+y^2=a^2$ if $c^2=a^2\left(1+m^2\right)$ which is the condition of tangency.
Point of Contact:
Solving $x^2+y^2=a^2$ and $y=m x \pm a \sqrt{1+m^2}$, simultaneously we get,
$
\begin{aligned}
& x= \pm \frac{a m}{\sqrt{\left(1+m^2\right)}} \\
& y=\mp \frac{a}{\sqrt{\left(1+m^2\right)}}
\end{aligned}
$
Thus, the coordinates of the points of contact are
$
\left( \pm \frac{a m}{\sqrt{\left(1+m^2\right)}}, \mp \frac{a}{\sqrt{\left(1+m^2\right)}}\right)
$
NOTE:
Equation of tangent of the circle $(x-h)^2+(y-k)^2=a^2$ in terms of slope is $(y-k)=m(x-h) \pm a \sqrt{\left(1+m^2\right)}$.
Equation of the Normal to a Circle
A line passing through a point P on the curve which is perpendicular to the tangent at P is called the normal to the curve at P.
For a circle, the normal always passes through the centre of the circle.
Point Form:
The equation of the Normal at the point $P\left(x_1, y_1\right)$ to a circle $S=x^2+y^2+2 g x+2 f y+c=0$ is
$
\frac{x-x_1}{g+x_1}=\frac{y-y_1}{f+y_1}
$
Proof:
As we know that the normal always passes through the centre $C(-g,-f)$ of a circle.
Thus, the equation of the normal at point $P$ to the circle
$
\begin{aligned}
& \mathrm{y}-\mathrm{y}_1 \\
= & \frac{\mathrm{y}_1+\mathrm{f}}{\mathrm{x}_1+\mathrm{g}}\left(\mathrm{x}-\mathrm{x}_1\right) \\
\Rightarrow \quad & \frac{\mathrm{x}-\mathrm{x}_1}{\mathrm{x}_1+\mathrm{g}}=\frac{\mathrm{y}-\mathrm{y}_1}{\mathrm{y}_1+\mathrm{f}}
\end{aligned}
$
This is the equation of the normal (CP) at point P of the circle
Tangent from a Point to the Circle
If a point lies outside of a circle (here point is P ), then two tangents can be drawn from P to the circle. Here, PQ and PR are two tangents.
If a point lies on the circle, then one tangent can be drawn from the point to the circle. If C is the point, then ACB is the tangent
If a point lies inside the circle, then no tangent can be drawn from the point to the circle.
To get equation of the tangents from an external point
Circle is : $\mathrm{x}^2+\mathrm{y}^2=\mathrm{a}^2$ and let the tangent to it be : $\mathrm{y}=\mathrm{mx}+\mathrm{a} \sqrt{\left(1+\mathrm{m}^2\right)}$ As the tangent passes through point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ lying out side the circle then, $\mathrm{y}_1=\mathrm{mx}_1+\mathrm{a} \sqrt{\left(1+\mathrm{m}^2\right)}$
$
\left(\mathrm{y}_1-\mathrm{mx}_1\right)^2=\mathrm{a}^2\left(1+\mathrm{m}^2\right)
$
or, $\left(x_1^2-a^2\right) m^2-2 \mathrm{mx}_1 \mathrm{y}_1+\mathrm{y}_1^2-\mathrm{a}^2=0$
Which is quadratic equation in m which gives two value of m .
The tangents are real, imaginary or coincidence that is depends on the value of the discriminant.
If we have real values of m, then we can find the equations of 2 tangents using these slopes and the point P.
Length of tangent (PT) from a point to a circle
The length of the tangent from a point $\mathrm{P}\left(x_1, y_1\right)$ to the circle $x^2+y^2+2 g x+2 f y+c=0$ is $\sqrt{x_1^2+y_1^2+2 g x_1+2 f y_1+c}$
In $\triangle \mathrm{PTC}, \mathrm{PT}^2=\mathrm{PC}^2-\mathrm{CT}^2$
Here coordinates of C are $(-\mathrm{g},-\mathrm{f})$
Hence, $\quad \mathrm{PT}^2=\left(\sqrt{\left(\mathrm{x}_1+\mathrm{g}\right)^2+\left(\mathrm{y}_1+\mathrm{f}\right)^2}\right)^2-\left(\sqrt{\mathrm{g}^2+\mathrm{f}^2-\mathrm{c}}\right)^2$
$\Rightarrow \quad \mathrm{PT}=\sqrt{\mathrm{x}_1^2+\mathrm{y}_1^2+2 \mathrm{gx}_1+2 \mathrm{fy}_1+\mathrm{c}} \quad[\because \mathrm{CT}=$ radius $]$
This expression can also be written as $P T=\sqrt{S_1}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"