Equation of the Bisectors is considered one of the most asked concept.
46 Questions around this concept.
The lines $L_1: y-x=0$ and $L_2: 2 x+y=0$ intersect the line $L_3: y+2=0$ at $P$ and $Q$ respectively. The bisector of the acute angle between $L_1$ and $L_2$ intersects $L_3$ at $R$.
Statement-1 : The ratio $P R: R Q$ equals $2 \sqrt{2}: \sqrt{5}$.
Statement 2: In any triangle, the bisector of an angle divides the triangle into two similar triangles.
The equation of the bisector of angle between the lines and
that contains the point
is
$
\text { Find the equation of angle bisectors of the lines: } 3 x-4 y+2=0 \text { and } 5 x+12 y-7=0
$
New: JEE Main 2026 Registration Link | Top 30 Most Repeated Questions
JEE Main Prep: Study Plan | Preparation Tips | High Scoring Chapters and Topics
JEE Main QP & Mock: Previous 10 Year Questions | Chapter Wise PYQs | Mock test Series
JEE Main Most Scoring Concept: January 2025 Session | April 2025 Session
$
\text { Find the equation of the perpendicular bisector of the line joining the points } A(3,4) \text { and } B(-1,2).
$
A line which bisects angle of a triangle is called
FInd the obtuse angle bisector of line 3x+4y+1 = 0 and 4x+3y-2 = 0
Equation of the Bisectors
The equation of the angle bisectors between the two lines
$
\begin{aligned}
& \mathrm{L}_1=\mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1=0 \text { and } \mathrm{L}_2=\mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2=0 \text { is }^{{ }^{-}} \\
& \frac{\left(\mathbf{a}_1 \mathbf{x}+\mathbf{b}_1 \mathbf{y}+\mathbf{c}_1\right)}{\sqrt{\mathbf{a}_1^2+\mathbf{b}_1^2}}= \pm \frac{\left(\mathbf{a}_2 \mathbf{x}+\mathbf{b}_2 \mathbf{y}+\mathbf{c}_2\right)}{\sqrt{\mathbf{a}_2^2+\mathbf{b}_2^2}}
\end{aligned}
$

Given equations of lines
$
\begin{aligned}
& \mathrm{L}_1: \mathrm{AB}: \mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1=0 \\
& \mathrm{~L}_2: \mathrm{CD}: \mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2=0
\end{aligned}
$
RR' and SS' are two bisectors of the angle between the line $A B$ and $C D$. And, $P(x, y)$ be any point on the line $R R$ ', then length of perepndicular from P on AB
$
\begin{array}{ll}
& \quad \text { length of perepndicular from } \mathrm{P} \text { on } \mathrm{CD} \\
\therefore & \frac{\left|\mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1\right|}{\sqrt{\mathrm{a}_1^2+\mathrm{b}_1^2}}=\frac{\left|\mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2\right|}{\sqrt{\mathrm{a}_2^2+\mathrm{b}_2^2}} \\
\text { or } & \frac{\left(\mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1\right)}{\sqrt{\mathrm{a}_1^2+\mathrm{b}_1^2}}= \pm \frac{\left(\mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2\right)}{\sqrt{\mathrm{a}_2^2+\mathrm{b}_2^2}}
\end{array}
$
Bisector of the Angle Containing the Origin
Rewrite the equation of the line $\mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1=0$ and $\mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2=0$ such that the constant term $\mathrm{c}_1$ and $\mathrm{c}_2$ are positive.
Then, the equation
$
\frac{\left(a_1 x+b_1 y+c_1\right)}{\sqrt{a_1^2+b_1^2}}=\frac{\left(a_2 x+b_2 y+c_2\right)}{\sqrt{a_2^2+b_2^2}}
$
gives the equation of the bisector of the angle containing the origin and
$
\frac{\left(a_1 x+b_1 y+c_1\right)}{\sqrt{a_1^2+b_1^2}}=-\frac{\left(a_2 x+b_2 y+c_2\right)}{\sqrt{a_2^2+b_2^2}}
$
gives the equation of the bisector of the angle not containing the origin.
Distinguish between obtuse and acute angle bisector

Let, $\quad \mathrm{L}_1: \mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1=0$
$
\mathrm{L}_2: \mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2=0
$
where, $c_1>0, c_2>0$
Equation of bisectors are
$
\begin{aligned}
& \frac{\left(a_1 x+b_1 y+c_1\right)}{\sqrt{a_1^2+b_1^2}}=\frac{\left(a_2 x+b_2 y+c_2\right)}{\sqrt{a_2^2+b_2^2}} \\
& \frac{\left(a_1 x+b_1 y+c_1\right)}{\sqrt{a_1^2+b_1^2}}=-\frac{\left(a_2 x+b_2 y+c_2\right)}{\sqrt{a_2^2+b_2^2}}
\end{aligned}
$
To distinguish between acute angles and obtuse angle bisectors, choose one of the equations of bisector, say eq (iii). Let the angle between this bisector and one of the given line be Ө/2, where Ө is an angle between lines containing these bisectors.
RO is the bisector of an acute angle if,
$
\begin{aligned}
& \ominus<\pi / 2 \\
& \Rightarrow \Theta / 2<\pi / 4 \\
& \Rightarrow|\tan (\Theta / 2)|<1 \\
& \Rightarrow \tan (\angle \mathrm{ROB})<1
\end{aligned}
$
Similarly, RO is the bisector of an obtuse angle if, $|\tan (\Theta / 2)|>1$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
