UPES B.Tech Admissions 2025
ApplyRanked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Equation of the Bisectors is considered one of the most asked concept.
28 Questions around this concept.
The equation of the bisector of angle between the lines and that contains the point is
Equation of the Bisectors
The equation of the angle bisectors between the two lines
$
\begin{aligned}
& \mathrm{L}_1=\mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1=0 \text { and } \mathrm{L}_2=\mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2=0 \text { is }^{{ }^{-}} \\
& \frac{\left(\mathbf{a}_1 \mathbf{x}+\mathbf{b}_1 \mathbf{y}+\mathbf{c}_1\right)}{\sqrt{\mathbf{a}_1^2+\mathbf{b}_1^2}}= \pm \frac{\left(\mathbf{a}_2 \mathbf{x}+\mathbf{b}_2 \mathbf{y}+\mathbf{c}_2\right)}{\sqrt{\mathbf{a}_2^2+\mathbf{b}_2^2}}
\end{aligned}
$
Given equations of lines
$
\begin{aligned}
& \mathrm{L}_1: \mathrm{AB}: \mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1=0 \\
& \mathrm{~L}_2: \mathrm{CD}: \mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2=0
\end{aligned}
$
RR' and SS' are two bisectors of the angle between the line $A B$ and $C D$. And, $P(x, y)$ be any point on the line $R R$ ', then length of perepndicular from P on AB
$
\begin{array}{ll}
& \quad \text { length of perepndicular from } \mathrm{P} \text { on } \mathrm{CD} \\
\therefore & \frac{\left|\mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1\right|}{\sqrt{\mathrm{a}_1^2+\mathrm{b}_1^2}}=\frac{\left|\mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2\right|}{\sqrt{\mathrm{a}_2^2+\mathrm{b}_2^2}} \\
\text { or } & \frac{\left(\mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1\right)}{\sqrt{\mathrm{a}_1^2+\mathrm{b}_1^2}}= \pm \frac{\left(\mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2\right)}{\sqrt{\mathrm{a}_2^2+\mathrm{b}_2^2}}
\end{array}
$
Bisector of the Angle Containing the Origin
Rewrite the equation of the line $\mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1=0$ and $\mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2=0$ such that the constant term $\mathrm{c}_1$ and $\mathrm{c}_2$ are positive.
Then, the equation
$
\frac{\left(a_1 x+b_1 y+c_1\right)}{\sqrt{a_1^2+b_1^2}}=\frac{\left(a_2 x+b_2 y+c_2\right)}{\sqrt{a_2^2+b_2^2}}
$
gives the equation of the bisector of the angle containing the origin and
$
\frac{\left(a_1 x+b_1 y+c_1\right)}{\sqrt{a_1^2+b_1^2}}=-\frac{\left(a_2 x+b_2 y+c_2\right)}{\sqrt{a_2^2+b_2^2}}
$
gives the equation of the bisector of the angle not containing the origin.
Distinguish between obtuse and acute angle bisector
Let, $\quad \mathrm{L}_1: \mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1=0$
$
\mathrm{L}_2: \mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2=0
$
where, $c_1>0, c_2>0$
Equation of bisectors are
$
\begin{aligned}
& \frac{\left(a_1 x+b_1 y+c_1\right)}{\sqrt{a_1^2+b_1^2}}=\frac{\left(a_2 x+b_2 y+c_2\right)}{\sqrt{a_2^2+b_2^2}} \\
& \frac{\left(a_1 x+b_1 y+c_1\right)}{\sqrt{a_1^2+b_1^2}}=-\frac{\left(a_2 x+b_2 y+c_2\right)}{\sqrt{a_2^2+b_2^2}}
\end{aligned}
$
To distinguish between acute angles and obtuse angle bisectors, choose one of the equations of bisector, say eq (iii). Let the angle between this bisector and one of the given line be Ө/2, where Ө is an angle between lines containing these bisectors.
RO is the bisector of an acute angle if,
Ө < π/2
⇒ Ө/2 < π/4
⇒ |tan (Ө/2)| < 1
⇒ tan (∠ROB) < 1
Similarly, RO is the bisector of an obtuse angle if, | tan (Ө/2) | > 1
"Stay in the loop. Receive exam news, study resources, and expert advice!"