JEE Main 2025 Admit Card Released for January 22, 23, 24 - Check How to Download

Equation of the Bisectors - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Equation of the Bisectors is considered one of the most asked concept.

  • 39 Questions around this concept.

Solve by difficulty

The lines $L_1: y-x=0$ and $L_2: 2 x+y=0$ intersect the line $L_3: y+2=0$ at $P$ and $Q$ respectively. The bisector of the acute angle between $L_1$ and $L_2$ intersects $L_3$ at $R$.

Statement-1 : The ratio $P R: R Q$ equals $2 \sqrt{2}: \sqrt{5}$.
Statement 2: In any triangle, the bisector of an angle divides the triangle into two similar triangles.

The equation of the bisector of angle between the lines \mathrm{x+y=1} and \mathrm{7 x-y=3}  that contains the point \mathrm{(2,3)} is 

$
\text { Find the equation of angle bisectors of the lines: } 3 x-4 y+2=0 \text { and } 5 x+12 y-7=0
$

 

 

$
\text { Find the equation of the perpendicular bisector of the line joining the points } A(3,4) \text { and } B(-1,2).
$

A line which bisects angle of a triangle is called 

 

FInd the obtuse angle bisector of line  3x+4y+1 = 0 and 4x+3y-2 = 0 

 

Concepts Covered - 2

Equation of the Bisectors

Equation of the Bisectors

The equation of the angle bisectors between the two lines

$
\begin{aligned}
& \mathrm{L}_1=\mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1=0 \text { and } \mathrm{L}_2=\mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2=0 \text { is }^{{ }^{-}} \\
& \frac{\left(\mathbf{a}_1 \mathbf{x}+\mathbf{b}_1 \mathbf{y}+\mathbf{c}_1\right)}{\sqrt{\mathbf{a}_1^2+\mathbf{b}_1^2}}= \pm \frac{\left(\mathbf{a}_2 \mathbf{x}+\mathbf{b}_2 \mathbf{y}+\mathbf{c}_2\right)}{\sqrt{\mathbf{a}_2^2+\mathbf{b}_2^2}}
\end{aligned}
$

Given equations of lines

$
\begin{aligned}
& \mathrm{L}_1: \mathrm{AB}: \mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1=0 \\
& \mathrm{~L}_2: \mathrm{CD}: \mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2=0
\end{aligned}
$
RR' and SS' are two bisectors of the angle between the line $A B$ and $C D$. And, $P(x, y)$ be any point on the line $R R$ ', then length of perepndicular from P on AB

$
\begin{array}{ll} 
& \quad \text { length of perepndicular from } \mathrm{P} \text { on } \mathrm{CD} \\
\therefore & \frac{\left|\mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1\right|}{\sqrt{\mathrm{a}_1^2+\mathrm{b}_1^2}}=\frac{\left|\mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2\right|}{\sqrt{\mathrm{a}_2^2+\mathrm{b}_2^2}} \\
\text { or } & \frac{\left(\mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1\right)}{\sqrt{\mathrm{a}_1^2+\mathrm{b}_1^2}}= \pm \frac{\left(\mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2\right)}{\sqrt{\mathrm{a}_2^2+\mathrm{b}_2^2}}
\end{array}
$
Bisector of the Angle Containing the Origin

Rewrite the equation of the line $\mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1=0$ and $\mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2=0$ such that the constant term $\mathrm{c}_1$ and $\mathrm{c}_2$ are positive.
Then, the equation

$
\frac{\left(a_1 x+b_1 y+c_1\right)}{\sqrt{a_1^2+b_1^2}}=\frac{\left(a_2 x+b_2 y+c_2\right)}{\sqrt{a_2^2+b_2^2}}
$

gives the equation of the bisector of the angle containing the origin and

$
\frac{\left(a_1 x+b_1 y+c_1\right)}{\sqrt{a_1^2+b_1^2}}=-\frac{\left(a_2 x+b_2 y+c_2\right)}{\sqrt{a_2^2+b_2^2}}
$

gives the equation of the bisector of the angle not containing the origin.

Distinguish between obtuse and acute angle bisector

Distinguish between obtuse and acute angle bisector

Let, $\quad \mathrm{L}_1: \mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1=0$

$
\mathrm{L}_2: \mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2=0
$

where, $c_1>0, c_2>0$
Equation of bisectors are

$
\begin{aligned}
& \frac{\left(a_1 x+b_1 y+c_1\right)}{\sqrt{a_1^2+b_1^2}}=\frac{\left(a_2 x+b_2 y+c_2\right)}{\sqrt{a_2^2+b_2^2}} \\
& \frac{\left(a_1 x+b_1 y+c_1\right)}{\sqrt{a_1^2+b_1^2}}=-\frac{\left(a_2 x+b_2 y+c_2\right)}{\sqrt{a_2^2+b_2^2}}
\end{aligned}
$
To distinguish between acute angles and obtuse angle bisectors, choose one of the equations of bisector, say eq (iii). Let the angle between this bisector and one of the given line be Ө/2, where Ө is an angle between lines containing these bisectors.   

RO is the bisector of an acute angle if,

$
\begin{aligned}
& \ominus<\pi / 2 \\
& \Rightarrow \Theta / 2<\pi / 4 \\
& \Rightarrow|\tan (\Theta / 2)|<1 \\
& \Rightarrow \tan (\angle \mathrm{ROB})<1
\end{aligned}
$
Similarly, RO is the bisector of an obtuse angle if, $|\tan (\Theta / 2)|>1$

Study it with Videos

Equation of the Bisectors
Distinguish between obtuse and acute angle bisector

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Equation of the Bisectors

Mathematics for Joint Entrance Examination JEE (Advanced) : Coordinate Geometry

Page No. : 2.21

Line : 13

Distinguish between obtuse and acute angle bisector

Mathematics for Joint Entrance Examination JEE (Advanced) : Coordinate Geometry

Page No. : 2.21

Line : 13

E-books & Sample Papers

Get Answer to all your questions

Back to top