VIT - VITEEE 2025
ApplyNational level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!
Equation of the Bisectors is considered one of the most asked concept.
46 Questions around this concept.
The lines $L_1: y-x=0$ and $L_2: 2 x+y=0$ intersect the line $L_3: y+2=0$ at $P$ and $Q$ respectively. The bisector of the acute angle between $L_1$ and $L_2$ intersects $L_3$ at $R$.
Statement-1 : The ratio $P R: R Q$ equals $2 \sqrt{2}: \sqrt{5}$.
Statement 2: In any triangle, the bisector of an angle divides the triangle into two similar triangles.
The equation of the bisector of angle between the lines and
that contains the point
is
$
\text { Find the equation of angle bisectors of the lines: } 3 x-4 y+2=0 \text { and } 5 x+12 y-7=0
$
JEE Main 2025: City Slip Link | Study Plan | Official Question Paper (Session 1)
JEE Main 2025: Sample Papers | Mock Tests | PYQs | High Scoring Topics | College Predictor
New: Meet Careers360 experts in your city and get guidance on shortlisting colleges
Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT
$
\text { Find the equation of the perpendicular bisector of the line joining the points } A(3,4) \text { and } B(-1,2).
$
A line which bisects angle of a triangle is called
FInd the obtuse angle bisector of line 3x+4y+1 = 0 and 4x+3y-2 = 0
Equation of the Bisectors
The equation of the angle bisectors between the two lines
$
\begin{aligned}
& \mathrm{L}_1=\mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1=0 \text { and } \mathrm{L}_2=\mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2=0 \text { is }^{{ }^{-}} \\
& \frac{\left(\mathbf{a}_1 \mathbf{x}+\mathbf{b}_1 \mathbf{y}+\mathbf{c}_1\right)}{\sqrt{\mathbf{a}_1^2+\mathbf{b}_1^2}}= \pm \frac{\left(\mathbf{a}_2 \mathbf{x}+\mathbf{b}_2 \mathbf{y}+\mathbf{c}_2\right)}{\sqrt{\mathbf{a}_2^2+\mathbf{b}_2^2}}
\end{aligned}
$
Given equations of lines
$
\begin{aligned}
& \mathrm{L}_1: \mathrm{AB}: \mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1=0 \\
& \mathrm{~L}_2: \mathrm{CD}: \mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2=0
\end{aligned}
$
RR' and SS' are two bisectors of the angle between the line $A B$ and $C D$. And, $P(x, y)$ be any point on the line $R R$ ', then length of perepndicular from P on AB
$
\begin{array}{ll}
& \quad \text { length of perepndicular from } \mathrm{P} \text { on } \mathrm{CD} \\
\therefore & \frac{\left|\mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1\right|}{\sqrt{\mathrm{a}_1^2+\mathrm{b}_1^2}}=\frac{\left|\mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2\right|}{\sqrt{\mathrm{a}_2^2+\mathrm{b}_2^2}} \\
\text { or } & \frac{\left(\mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1\right)}{\sqrt{\mathrm{a}_1^2+\mathrm{b}_1^2}}= \pm \frac{\left(\mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2\right)}{\sqrt{\mathrm{a}_2^2+\mathrm{b}_2^2}}
\end{array}
$
Bisector of the Angle Containing the Origin
Rewrite the equation of the line $\mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1=0$ and $\mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2=0$ such that the constant term $\mathrm{c}_1$ and $\mathrm{c}_2$ are positive.
Then, the equation
$
\frac{\left(a_1 x+b_1 y+c_1\right)}{\sqrt{a_1^2+b_1^2}}=\frac{\left(a_2 x+b_2 y+c_2\right)}{\sqrt{a_2^2+b_2^2}}
$
gives the equation of the bisector of the angle containing the origin and
$
\frac{\left(a_1 x+b_1 y+c_1\right)}{\sqrt{a_1^2+b_1^2}}=-\frac{\left(a_2 x+b_2 y+c_2\right)}{\sqrt{a_2^2+b_2^2}}
$
gives the equation of the bisector of the angle not containing the origin.
Distinguish between obtuse and acute angle bisector
Let, $\quad \mathrm{L}_1: \mathrm{a}_1 \mathrm{x}+\mathrm{b}_1 \mathrm{y}+\mathrm{c}_1=0$
$
\mathrm{L}_2: \mathrm{a}_2 \mathrm{x}+\mathrm{b}_2 \mathrm{y}+\mathrm{c}_2=0
$
where, $c_1>0, c_2>0$
Equation of bisectors are
$
\begin{aligned}
& \frac{\left(a_1 x+b_1 y+c_1\right)}{\sqrt{a_1^2+b_1^2}}=\frac{\left(a_2 x+b_2 y+c_2\right)}{\sqrt{a_2^2+b_2^2}} \\
& \frac{\left(a_1 x+b_1 y+c_1\right)}{\sqrt{a_1^2+b_1^2}}=-\frac{\left(a_2 x+b_2 y+c_2\right)}{\sqrt{a_2^2+b_2^2}}
\end{aligned}
$
To distinguish between acute angles and obtuse angle bisectors, choose one of the equations of bisector, say eq (iii). Let the angle between this bisector and one of the given line be Ө/2, where Ө is an angle between lines containing these bisectors.
RO is the bisector of an acute angle if,
$
\begin{aligned}
& \ominus<\pi / 2 \\
& \Rightarrow \Theta / 2<\pi / 4 \\
& \Rightarrow|\tan (\Theta / 2)|<1 \\
& \Rightarrow \tan (\angle \mathrm{ROB})<1
\end{aligned}
$
Similarly, RO is the bisector of an obtuse angle if, $|\tan (\Theta / 2)|>1$
"Stay in the loop. Receive exam news, study resources, and expert advice!"