Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
Equation of Straight Line (Part 1), Equation of Straight Line (Part 2), Normal and Parametric form of a line is considered one of the most asked concept.
109 Questions around this concept.
A ray of light along $x+\sqrt{3} y=\sqrt{3}$ gets reflected upon reaching $x$-axis ,the equation of the reflected ray is :
Let PS be the median of the triangle with vertices P(2, 2), Q(6,-1) and R(7, 3). The equation of the line passing through (1,-1) and parallel to PS is :
The equation of the line bisecting perpendicularly the segment joining the points and
is
Latest: Free All-India JEE Main 2026 Mock Test - Attempt Now
JEE Main Sample Papers: Physics | Chemistry | Maths | Top 30 Repeated Questions
JEE Main QP & Mock: Previous 10 Year Questions | Chapter Wise PYQs | Mock test Series
JEE Main Most Scoring Concept: January 2025 Session | April 2025 Session | Overall
Find the line which is equally inclined to $x+2 y-1=0$ and passes through $(0,2)$
Find which of the following points don't lie on the line 3x-y+2=0.
If a line passes through $\left ( -1,0 \right )$ and is inclined at an angle of $30^{o}$ with the position X-axis, find its slope-point form of the equation of a line in simplified form.
Which of the following is the correct diagram of line with slope $-\sqrt{3}$ ?
Write $3 x-y=2$ in slope interception form of the equation of a line
A line passes through (2, 2) and is perpendicular to the line 3x + y = 3. Its y-intercept is
If $a^4 b^4-a^4-b^4=2 a^2 b^2\{a, b \in R-\{0\}\}$, then the line $\frac{x}{a^2}+\frac{y}{b^2}=1$, will pass through
Equation of Straight Line
(a) Slope-Intercept form

Consider the given figure
$A B$ is a straight line with slope $m$ and intercept $c$ on Y -axis. $\mathrm{P}(\mathrm{x}, \mathrm{y})$ any point on the straight line. PL is perpendicular to X -axis and MQ is perpendicular to Y -axis
$
\begin{aligned}
& \angle \mathrm{PRL}=\angle \mathrm{PQM}=\theta, \quad \mathrm{OQ}=\mathrm{c} \\
& \mathrm{PM}=\mathrm{PL}-\mathrm{ML}=\mathrm{PL}-\mathrm{OQ}=\mathrm{y}-\mathrm{c} \\
& \mathrm{QM}=\mathrm{OL}=\mathrm{x} \\
& \operatorname{In} \triangle \mathrm{PQM}, \tan \theta=\frac{\mathrm{PM}}{\mathrm{QM}}=\frac{\mathrm{y}-\mathrm{c}}{\mathrm{x}} \\
& \tan \theta=\mathrm{m}=\frac{\mathrm{y}-\mathrm{c}}{\mathrm{x}} \\
& \Rightarrow \mathrm{y}=\mathrm{mx}+\mathrm{c}
\end{aligned}
$
The equation of a straight line whose slope is given as $m$ and making $y$-intercept of length $c$ unit is $y=m x+c$.
If the straight line passing through the origin, then equation of straight line become $y=m x$
If Equation of straight line is $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$, then
We can write $\mathrm{By}=-\mathrm{Ax}-\mathrm{C}$
$
\mathrm{y}=\left(-\frac{\mathrm{A}}{\mathrm{~B}}\right) \mathrm{x}+\left(-\frac{\mathrm{C}}{\mathrm{~B}}\right)
$
compare with $\mathrm{y}=\mathrm{mx}+\mathrm{c}$
$
\begin{aligned}
& \text { slope }=m=-\frac{A}{B} \\
& y-\text { intercept }=c=-\frac{C}{B}
\end{aligned}
$
(b) Point-Slope form
Let the equation of give line I with slope ' $m$ ' is
$
y=m x+c
$
$\left(x_1, y_1\right)$ lies on the line i
$
y_1=m x_1+c
$
From (i) and (ii) [(ii) - (i)]
$
y-y_1=m\left(x-x_1\right)
$
The equation of a straight line whose slope is given as ' $m$ ' and passes through the point $\left(x_1, y_1\right)$ is $\mathbf{y}-\mathbf{y}_1=\mathbf{m}\left(\mathbf{x}-\mathbf{x}_1\right)$
Equation of Straight Line
(c) Two-point form
The equation of a straight line passing through the two given points (x1,y1) and (x2,y2) is given by
$
\mathbf{y}-\mathbf{y}_1=\left(\frac{\mathbf{y}_2-\mathbf{y}_1}{\mathbf{x}_2-\mathbf{x}_1}\right)\left(\mathbf{x}-\mathbf{x}_1\right)
$
Proof:
Let the equation of straight line I with slope ' $m$ ' be
$
y=m x+c
$
Points $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ and $\left(\mathrm{x}_2, \mathrm{y}_2\right)$ pass through the given line I , then
$
\begin{aligned}
& \mathrm{y}_1=\mathrm{mx}_1+\mathrm{c} \\
& \mathrm{y}_2=\mathrm{mx}_2+\mathrm{c}
\end{aligned}
$
$\qquad$
Subtract eq (ii) from eq (i)
$
y-y_1=m\left(x-x_1\right)
$
Subtract eq (iii) from eq (i)
$
\mathrm{y}-\mathrm{y}_2=\mathrm{m}\left(\mathrm{x}-\mathrm{x}_2\right)
$
Divide eq (iv) by eq ( $\mathbf{v}$ )
$
\begin{aligned}
& \frac{\mathrm{y}-\mathrm{y}_1}{\mathrm{y}_2-\mathrm{y}_1}=\frac{\mathrm{x}-\mathrm{x}_1}{\mathrm{x}_2-\mathrm{x}_1} \\
& \Rightarrow \mathrm{y}-\mathrm{y}_{\mathbf{1}}=\left(\frac{\mathrm{y}_2-\mathrm{y}_1}{\mathrm{x}_2-\mathrm{x}_1}\right)\left(\mathrm{x}-\mathrm{x}_{\mathbf{1}}\right) \\
& \text { also here } \mathrm{m}=\left(\frac{\mathrm{y}_2-\mathrm{y}_1}{\mathrm{x}_2-\mathrm{x}_1}\right)
\end{aligned}
$
Determinant Form:
If $\mathrm{P}(\mathrm{x}, \mathrm{y}), \mathrm{Q}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ and $\mathrm{R}\left(\mathrm{x}_2, \mathrm{y}_2\right)$ are collinear, then area of $\triangle \mathrm{PQR}=0$
i.e. $\left.\quad \frac{1}{2}\left|\begin{array}{ccc}x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1\end{array}\right| \right\rvert\,=0$
(d) Intercept form of line
Equation of a straight line which makes intercepts ' $a$ ' and 'b' on X -axis and Y -axis respectively is given by
$
\frac{\mathrm{x}}{\mathrm{a}}+\frac{\mathrm{y}}{\mathrm{~b}}=1
$
Proof:
A straight line which cut $X$-axis at $A(a, 0)$ and $Y$-axis at $B(0, b)$
Using the concept of two points form of a line
Equation of a straight line through the two-point $A(a, 0)$ and $B(0, b)$
$
\begin{aligned}
& y-0=\frac{b-0}{0-a}(x-a) \\
& \Rightarrow-a y=b x-a b \\
& \Rightarrow b x+a y=a b
\end{aligned}
$
divide LHS and RHS by ab
$
\frac{x}{a}+\frac{y}{b}=1
$
Note:
For the general equation $A x+B y+C=0$
If $\mathrm{C} \neq 0$, then $\mathrm{Ax}+\mathrm{By}+\mathrm{C}=0$ can be written as
$
\begin{aligned}
& A x+B y=-C \\
& \frac{x}{-\frac{C}{A}}+\frac{y}{-\frac{C}{B}}=1 \text { or } \frac{x}{a}+\frac{y}{b}=1
\end{aligned}
$
where, $\mathrm{a}=-\frac{\mathrm{C}}{\mathrm{A}}$ and $\mathrm{b}=-\frac{\mathrm{C}}{\mathrm{B}}$
Hence, $x$-intercept is $-\frac{\mathrm{C}}{\mathrm{A}}$ and $y$-intercept is $-\frac{\mathrm{C}}{\mathrm{B}}$
Normal and Parametric form of a line
Normal form of line
Equation of straight line on which the length of the perpendicular from the origin is $p$ and this normal makes an angle $\theta$ with the positive direction of X -axis is given by
$
\mathbf{x} \cos \theta+\mathbf{y} \sin \theta=\mathbf{p}
$
Proof:
$A B$ is the straight line and length of perpendicular from origin to the line is p (i.e. $O N=p$ ).
Line $A B$ cuts $X$-axis and $Y$-axis at point $Q$ and $R$ respectively

$
\begin{aligned}
& \angle \mathrm{NOX}=\theta \\
& \angle \mathrm{NQO}=90^{\circ}-\theta \\
& \therefore \angle \mathrm{NQX}=180^{\circ}-\left(90^{\circ}-\theta\right)=90^{\circ}+\theta \\
& \text { Slope } m=\tan \left(90^{\circ}+\theta\right)=-\cot (\theta)
\end{aligned}
$
In triangle NOL
$
O L=x=p \cdot \cos \theta, N L=y=p \cdot \sin \theta
$
Point $N(p \cdot \cos \theta, p \cdot \sin \theta)$
Using Slope-point form, equation of line $A B$ is
$
\begin{aligned}
& y-p \cdot \sin \theta=-\frac{\cos \theta}{\sin \theta}(x-p \cdot \cos \theta) \\
& x \cdot \cos \theta+y \cdot \sin \theta=p
\end{aligned}
$
Parametric form of a line
The equation of a straight line passing through the point $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ and making an angle $\theta$ with the positive direction of $X$-axis is
$
\frac{\mathrm{x}-\mathrm{x}_1}{\cos \theta}=\frac{\mathrm{y}-\mathrm{y}_1}{\sin \theta}=\mathrm{r}
$
Where $r$ is the directed distance between the points $(x, y)$ and $\left(x_1, y_1\right)$.
Proof:
$A B$ is a straight line passing through the point $P\left(x_1, y_1\right)$ and meets $X$-axis at $R$ and makes an angle $\theta$ with the positive direction of $X$-axis.

Let $Q(x, y)$ be any point on the line $A B$ at a distance ' $r$ ' from $P$
As from the figure
$
\begin{aligned}
& \mathrm{PN}=\mathrm{ML}=\mathrm{OL}-\mathrm{OM}=\mathrm{x}-\mathrm{x}_1 \\
& \mathrm{QN}=\mathrm{QL}-\mathrm{NL}=\mathrm{QL}-\mathrm{PM}=\mathrm{y}-\mathrm{y}_1 \\
& \mathrm{In} \triangle \mathrm{NPQ} \\
& \cos \theta=\frac{\mathrm{PN}}{\mathrm{PQ}}=\frac{\mathrm{x}-\mathrm{x}_1}{\mathrm{r}} \\
& \sin \theta=\frac{\mathrm{QN}}{\mathrm{PQ}}=\frac{\mathrm{y}-\mathrm{y}_1}{\mathrm{r}}
\end{aligned}
$
From the above two equation
$
\frac{x-x_1}{\cos \theta}=\frac{y-y_1}{\sin \theta}=r
$
Also,
$
\begin{aligned}
& \mathrm{x}=\mathrm{x}_1+\mathrm{r} \cos \theta \\
& \mathrm{y}=\mathrm{y}_1+\mathrm{r} \sin \theta
\end{aligned}
$
Parametric equations of straight line AB
"Stay in the loop. Receive exam news, study resources, and expert advice!"
