UPES B.Tech Admissions 2025
Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 15th May
64 Questions around this concept.
If a hyperbola passes through the point $P(10,16)$ and it has vertices at $( \pm 6,0)$, then the equation of the normal to it at P is :
The line will be normal to the hyperbola
if
The foot of normals drawn from the point p(h,k) to the hyperbola will always lie on the conic
The line $\ell_{\mathrm{x}}+\mathrm{my}+\mathrm{n}=0$ will be a normal to the hyperbola $\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$, if
The point $P(-2 \sqrt{6}, \sqrt{3})_{\text {lies on the hyperbola }} \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ having eccentricity $\frac{\sqrt{5}}{2}$. If the tangent and normal at $P$ to the hyperbola intersects its conjugate axis at the points $Q$ and $R$ respectively, then $Q R$ is equal to:
Let and
, be two points on the hyperbola
. If (h, k) is the point of the intersection of the normals at P and Q, then k is equal to
A variable straight line of slope intersects the hyperbola
at two points. The locus of the point which divides the line segment between these two points in the ratio
is
Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 15th May
Merit Scholarships | NAAC A+ Accredited | Top Recruiters : E&Y, CYENT, Nvidia, CISCO, Genpact, Amazon & many more
Angie between tangents drawn from the point to the hyperbola
is equal to
The locus of the middle points of chords of hyperbola parallel to
is
The locus of the middle points of chords of hyperbola parallel to
is
Equation of Normal of Hyperbola in Point and Parametric Forms
Point form
The equation of normal at $\left(x_1, y_1\right)$ to the hyperbola, $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is $\frac{a^2 x}{x_1}+\frac{b^2 y}{y_1}=a^2+b^2$.
We know that the equation of tangent in point form at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$
$
\frac{x x_1}{a^2}-\frac{y y_1}{b^2}=1
$
Slope of tangent at $\left(x_1, y_1\right)$ is $\frac{b^2 x_1}{a^2 y_1}$
$\therefore \quad$ Slope of normal at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $-\frac{\mathrm{a}^2 \mathrm{y}_1}{\mathrm{~b}^2 \mathrm{x}_1}$
Hence, the equation of normal at point $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is
$
\left(\mathrm{y}-\mathrm{y}_1\right)=-\frac{\mathrm{a}^2 \mathrm{y}_1}{\mathrm{~b}^2 \mathrm{x}_1}\left(\mathrm{x}-\mathrm{x}_1\right)
$
$
\text { or } \quad \frac{a^2 x}{x_1}+\frac{b^2 y}{y_1}=a^2+b^2
$
Parametric form
The equation of normal at $(a \sec \theta, b \tan \theta)$ to the hyperbola, $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is $a x \cos \theta+b y \cot \theta=a^2+b^2$
Proof:
The equation of normal in point form is $\frac{a^2 x}{x_1}+\frac{b^2 y}{y_1}=a^2+b^2$
$
\begin{aligned}
& \text { Put }\left(x_1, y_1\right) \equiv(a \sec \theta, b \tan \theta) \\
& \Rightarrow \quad \frac{a^2 x}{a \sec \theta}+\frac{b^2 y}{b \tan \theta}=a^2+b^2 \\
& \Rightarrow \quad a x \cos \theta+b y \cot \theta=a^2+b^2
\end{aligned}
$
Equation of Normal of Hyperbola in Parametric Form and Slope Form
Parametric form:
The equation of normal at $(a \sec \theta, b \tan \theta)$ to the hyperbola, $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is $a x \cos \theta+b y \cot \theta=a^2+b^2$
The equation of normal in point form is $\frac{a^2 x}{x_1}+\frac{b^2 y}{y_1}=a^2+b^2{ }_{\text {, put }}\left(x_1, y_1\right) \equiv(a \sec \theta, b \tan \theta)$.
$
\begin{aligned}
& \Rightarrow \quad \frac{a^2 x}{a \sec \theta}+\frac{b^2 y}{b \tan \theta}=a^2+b^2 \\
& \Rightarrow \quad a x \cos \theta+b y \cot \theta=a^2+b^2
\end{aligned}
$
Slope form:
The equation of normal of slope m to the hyperbola, $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ are $y=m x \mp \frac{m\left(a^2+b^2\right)}{\sqrt{a^2-m^2 b^2}}$ and coordinate of point of contact is $\left( \pm \frac{a^2}{\sqrt{a^2-m^2 b^2}}, \mp \frac{m b^2}{\sqrt{a^2-m^2 b^2}}\right)$
The equation of normal at $(a \sec \theta, b \tan \theta)$ to the hyperbola, $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is $a x \cos \theta+b y \cot \theta=a^2+b^2$
$\Rightarrow \quad y=-\frac{a \sin \theta}{b} x+\frac{a^2+b^2}{b \cot \theta}$
Let, $\quad-\frac{\mathrm{a} \sin \theta}{\mathrm{b}}=\mathrm{m}$
$\therefore \quad \sin \theta=-\frac{b m}{a}$
$\therefore \quad \cot \theta= \pm \frac{\sqrt{a^2-b^2 m^2}}{b m}$
Hence, the equation of normal become
$y=m x \mp \frac{m\left(a^2+b^2\right)}{\sqrt{a^2-m^2 b^2}}$, where $m \in\left[-\frac{a}{b}, \frac{a}{b}\right]$
Pair of Tangents
The combined equation of pair of tangents from the point $P\left(x_1, y_1\right)$ to the hyperbola
$
\begin{aligned}
& \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \text { is }\left(\frac{x^2}{a^2}-\frac{y^2}{b^2}-1\right)\left(\frac{x_1^2}{a^2}-\frac{y_1^2}{b^2}-1\right)=\left(\frac{x x_1}{a^2}-\frac{y y_1}{b^2}-1\right)^2 \\
& \text { or, } \quad S S_1=T^2 \\
& \text { where, } \quad \mathrm{S}=\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}-1 \\
& \mathrm{~S}_1=\frac{\mathrm{x}_1^2}{\mathrm{a}^2}-\frac{\mathrm{y}_1^2}{\mathrm{~b}_2^2}-1 \\
& \mathrm{~T}=\frac{\mathrm{xx}_1}{\mathrm{a}^2}-\frac{\mathrm{yy}_1}{\mathrm{~b}^2}-1
\end{aligned}
$
Note:
The formula $\mathbf{S S}_{\mathbf{1}}=\mathbf{T}^{\mathbf{2}}$ can be used to find the combined equation of pair of tangents for any general hyperbola as well.
Chord of Contact
The equation of chord of contact of tangents from the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is $\frac{\mathrm{xx}_1}{\mathrm{a}^2}-\frac{\mathrm{yy}_1}{\mathrm{~b}^2}=1$ i.e. $\mathbf{T}=\mathbf{0}$ which is chord of contact $Q R$.
Equation of Chord bisected at a given point:
The equation of chord of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ bisected at a given point $P\left(x_1, y_1\right)$ is $\frac{\mathrm{xx}_1}{\mathrm{a}^2}-\frac{\mathrm{yy}_1}{\mathrm{~b}^2}-1=\frac{\mathrm{x}_1^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}-1$
or, $\mathrm{T}=\mathrm{S}_1$
Note:
These formulae can be used for any general hyperbola as well.
"Stay in the loop. Receive exam news, study resources, and expert advice!"