JEE Main Result 2025 Session 2 Paper 1 (Out) - Paper 2 Scorecard Soon at jeemain.nta.nic.in

Equation of Normal of Hyperbola in Point ,Parametric Form - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 64 Questions around this concept.

Solve by difficulty

If a hyperbola passes through the point $P(10,16)$ and it has vertices at $( \pm 6,0)$, then the equation of the normal to it at P is :

The line \mathrm{l \mathrm{x}+\mathrm{my}+\mathrm{n}=0} will be normal to the hyperbola \mathrm{b^2 x^2-a^2 y^2=a^2 b^2} if

The foot of normals drawn from the point p(h,k) to the hyperbola \mathrm{\frac{x^2}{a^2}-\frac{y^2}{b^2}=1}  will always lie on the conic

The line $\ell_{\mathrm{x}}+\mathrm{my}+\mathrm{n}=0$ will be a normal to the hyperbola $\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$, if

The point $P(-2 \sqrt{6}, \sqrt{3})_{\text {lies on the hyperbola }} \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ having eccentricity $\frac{\sqrt{5}}{2}$. If the tangent and normal at $P$ to the hyperbola intersects its conjugate axis at the points $Q$ and $R$ respectively, then $Q R$ is equal to:

Let \mathrm{\mathrm{P}(\mathrm{a} \sec \theta, \mathrm{b} \tan \theta)} and \mathrm{Q(a \sec \phi, b \tan \phi)} \mathrm{\text {, where } \theta+\phi=\frac{\pi}{2}},  be two points on the hyperbola \mathrm{\frac{x^2}{a^2}-\frac{y^2}{b^2}=1} . If (h, k) is the point of the intersection of the normals at P and Q, then k is equal to

 

A variable straight line of slope 4 intersects the hyperbola \mathrm{xy=1} at two points. The locus of the point which divides the line segment between these two points in the ratio \mathrm{1:2} is

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 15th May

ICFAI University Hyderabad B.Tech Admissions 2025

Merit Scholarships | NAAC A+ Accredited | Top Recruiters : E&Y, CYENT, Nvidia, CISCO, Genpact, Amazon & many more

Angie between tangents drawn from the point \mathrm{P}(\sqrt{3}, 1) to the hyperbola \mathrm{\frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{5}=1}  is equal to

The locus of the middle points of chords of hyperbola \mathrm{3 x^{2}-2 y^{2}+4 x-6 y=0} parallel to \mathrm{y=2 x} is

JEE Main 2025 College Predictor
Know your college admission chances in NITs, IIITs and CFTIs, many States/ Institutes based on your JEE Main rank by using JEE Main 2025 College Predictor.
Use Now

The locus of the middle points of chords of hyperbola \mathrm{3 x^2-2 y^2+4 x-6 y=0} parallel to \mathrm{y=2 x} is 

Concepts Covered - 4

Equation of Normal of Hyperbola in Point Form

Equation of Normal of Hyperbola in Point and Parametric Forms

Point form

The equation of normal at $\left(x_1, y_1\right)$ to the hyperbola, $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is $\frac{a^2 x}{x_1}+\frac{b^2 y}{y_1}=a^2+b^2$.

We know that the equation of tangent in point form at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$

$
\frac{x x_1}{a^2}-\frac{y y_1}{b^2}=1
$
Slope of tangent at $\left(x_1, y_1\right)$ is $\frac{b^2 x_1}{a^2 y_1}$
$\therefore \quad$ Slope of normal at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $-\frac{\mathrm{a}^2 \mathrm{y}_1}{\mathrm{~b}^2 \mathrm{x}_1}$
Hence, the equation of normal at point $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is

$
\left(\mathrm{y}-\mathrm{y}_1\right)=-\frac{\mathrm{a}^2 \mathrm{y}_1}{\mathrm{~b}^2 \mathrm{x}_1}\left(\mathrm{x}-\mathrm{x}_1\right)
$
$
\text { or } \quad \frac{a^2 x}{x_1}+\frac{b^2 y}{y_1}=a^2+b^2
$
Parametric form
The equation of normal at $(a \sec \theta, b \tan \theta)$ to the hyperbola, $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is $a x \cos \theta+b y \cot \theta=a^2+b^2$

Proof:
The equation of normal in point form is $\frac{a^2 x}{x_1}+\frac{b^2 y}{y_1}=a^2+b^2$

$
\begin{aligned}
& \text { Put }\left(x_1, y_1\right) \equiv(a \sec \theta, b \tan \theta) \\
& \Rightarrow \quad \frac{a^2 x}{a \sec \theta}+\frac{b^2 y}{b \tan \theta}=a^2+b^2 \\
& \Rightarrow \quad a x \cos \theta+b y \cot \theta=a^2+b^2
\end{aligned}
$


 

Equation of Normal of Hyperbola in Parametric Form and Slope Form

Equation of Normal of Hyperbola in Parametric Form and Slope Form

Parametric form:

The equation of normal at $(a \sec \theta, b \tan \theta)$ to the hyperbola, $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is $a x \cos \theta+b y \cot \theta=a^2+b^2$

The equation of normal in point form is $\frac{a^2 x}{x_1}+\frac{b^2 y}{y_1}=a^2+b^2{ }_{\text {, put }}\left(x_1, y_1\right) \equiv(a \sec \theta, b \tan \theta)$.

$
\begin{aligned}
& \Rightarrow \quad \frac{a^2 x}{a \sec \theta}+\frac{b^2 y}{b \tan \theta}=a^2+b^2 \\
& \Rightarrow \quad a x \cos \theta+b y \cot \theta=a^2+b^2
\end{aligned}
$

Slope form:

The equation of normal of slope m to the hyperbola, $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ are $y=m x \mp \frac{m\left(a^2+b^2\right)}{\sqrt{a^2-m^2 b^2}}$ and coordinate of point of contact is $\left( \pm \frac{a^2}{\sqrt{a^2-m^2 b^2}}, \mp \frac{m b^2}{\sqrt{a^2-m^2 b^2}}\right)$

The equation of normal at $(a \sec \theta, b \tan \theta)$ to the hyperbola, $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is $a x \cos \theta+b y \cot \theta=a^2+b^2$
$\Rightarrow \quad y=-\frac{a \sin \theta}{b} x+\frac{a^2+b^2}{b \cot \theta}$
Let, $\quad-\frac{\mathrm{a} \sin \theta}{\mathrm{b}}=\mathrm{m}$
$\therefore \quad \sin \theta=-\frac{b m}{a}$
$\therefore \quad \cot \theta= \pm \frac{\sqrt{a^2-b^2 m^2}}{b m}$

Hence, the equation of normal become
$y=m x \mp \frac{m\left(a^2+b^2\right)}{\sqrt{a^2-m^2 b^2}}$, where $m \in\left[-\frac{a}{b}, \frac{a}{b}\right]$

 

 

Pair of Tangent

Pair of Tangents

The combined equation of pair of tangents from the point $P\left(x_1, y_1\right)$ to the hyperbola

$
\begin{aligned}
& \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \text { is }\left(\frac{x^2}{a^2}-\frac{y^2}{b^2}-1\right)\left(\frac{x_1^2}{a^2}-\frac{y_1^2}{b^2}-1\right)=\left(\frac{x x_1}{a^2}-\frac{y y_1}{b^2}-1\right)^2 \\
& \text { or, } \quad S S_1=T^2 \\
& \text { where, } \quad \mathrm{S}=\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}-1 \\
& \mathrm{~S}_1=\frac{\mathrm{x}_1^2}{\mathrm{a}^2}-\frac{\mathrm{y}_1^2}{\mathrm{~b}_2^2}-1 \\
& \mathrm{~T}=\frac{\mathrm{xx}_1}{\mathrm{a}^2}-\frac{\mathrm{yy}_1}{\mathrm{~b}^2}-1
\end{aligned}
$
Note:

The formula $\mathbf{S S}_{\mathbf{1}}=\mathbf{T}^{\mathbf{2}}$ can be used to find the combined equation of pair of tangents for any general hyperbola as well.

Chord of Contact

Chord of Contact

The equation of chord of contact of tangents from the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is $\frac{\mathrm{xx}_1}{\mathrm{a}^2}-\frac{\mathrm{yy}_1}{\mathrm{~b}^2}=1$ i.e. $\mathbf{T}=\mathbf{0}$ which is chord of contact $Q R$.

Equation of Chord bisected at a given point:

The equation of chord of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ bisected at a given point $P\left(x_1, y_1\right)$ is $\frac{\mathrm{xx}_1}{\mathrm{a}^2}-\frac{\mathrm{yy}_1}{\mathrm{~b}^2}-1=\frac{\mathrm{x}_1^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}-1$
or, $\mathrm{T}=\mathrm{S}_1$

Note:

These formulae can be used for any general hyperbola as well.

Study it with Videos

Equation of Normal of Hyperbola in Point Form
Equation of Normal of Hyperbola in Parametric Form and Slope Form
Pair of Tangent

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top