Jain University B.Tech Admissions 2025
100% Placement Record | Highest CTC 54 LPA | NAAC A++ Accredited | Ranked #65 in India by NIRF Ranking 2024 | JEE & JET Scores Accepted
64 Questions around this concept.
If a hyperbola passes through the point $P(10,16)$ and it has vertices at $( \pm 6,0)$, then the equation of the normal to it at P is :
The line will be normal to the hyperbola
if
The foot of normals drawn from the point p(h,k) to the hyperbola will always lie on the conic
JEE Main 2026: Preparation Tips & Study Plan | Previous 10 Year Questions
JEE Main 2026: 100 Days Study Plan | High Scoring Chapters and Topics | Preparation Tips
JEE Main 2025 Most Scoring Concept: January Session | April Session
Don't Miss: Best Public Engineering Colleges | Top 30 Most Repeated Questions & Topics
The line $\ell_{\mathrm{x}}+\mathrm{my}+\mathrm{n}=0$ will be a normal to the hyperbola $\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$, if
The point $P(-2 \sqrt{6}, \sqrt{3})_{\text {lies on the hyperbola }} \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ having eccentricity $\frac{\sqrt{5}}{2}$. If the tangent and normal at $P$ to the hyperbola intersects its conjugate axis at the points $Q$ and $R$ respectively, then $Q R$ is equal to:
Let and
, be two points on the hyperbola
. If (h, k) is the point of the intersection of the normals at P and Q, then k is equal to
A variable straight line of slope intersects the hyperbola
at two points. The locus of the point which divides the line segment between these two points in the ratio
is
100% Placement Record | Highest CTC 54 LPA | NAAC A++ Accredited | Ranked #65 in India by NIRF Ranking 2024 | JEE & JET Scores Accepted
Among Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
Angie between tangents drawn from the point to the hyperbola
is equal to
The locus of the middle points of chords of hyperbola parallel to
is
The locus of the middle points of chords of hyperbola parallel to
is
Equation of Normal of Hyperbola in Point and Parametric Forms
Point form
The equation of normal at $\left(x_1, y_1\right)$ to the hyperbola, $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is $\frac{a^2 x}{x_1}+\frac{b^2 y}{y_1}=a^2+b^2$.
We know that the equation of tangent in point form at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$
$
\frac{x x_1}{a^2}-\frac{y y_1}{b^2}=1
$
Slope of tangent at $\left(x_1, y_1\right)$ is $\frac{b^2 x_1}{a^2 y_1}$
$\therefore \quad$ Slope of normal at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $-\frac{\mathrm{a}^2 \mathrm{y}_1}{\mathrm{~b}^2 \mathrm{x}_1}$
Hence, the equation of normal at point $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is
$
\left(\mathrm{y}-\mathrm{y}_1\right)=-\frac{\mathrm{a}^2 \mathrm{y}_1}{\mathrm{~b}^2 \mathrm{x}_1}\left(\mathrm{x}-\mathrm{x}_1\right)
$
$
\text { or } \quad \frac{a^2 x}{x_1}+\frac{b^2 y}{y_1}=a^2+b^2
$
Parametric form
The equation of normal at $(a \sec \theta, b \tan \theta)$ to the hyperbola, $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is $a x \cos \theta+b y \cot \theta=a^2+b^2$
Proof:
The equation of normal in point form is $\frac{a^2 x}{x_1}+\frac{b^2 y}{y_1}=a^2+b^2$
$
\begin{aligned}
& \text { Put }\left(x_1, y_1\right) \equiv(a \sec \theta, b \tan \theta) \\
& \Rightarrow \quad \frac{a^2 x}{a \sec \theta}+\frac{b^2 y}{b \tan \theta}=a^2+b^2 \\
& \Rightarrow \quad a x \cos \theta+b y \cot \theta=a^2+b^2
\end{aligned}
$
Equation of Normal of Hyperbola in Parametric Form and Slope Form
Parametric form:
The equation of normal at $(a \sec \theta, b \tan \theta)$ to the hyperbola, $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is $a x \cos \theta+b y \cot \theta=a^2+b^2$
The equation of normal in point form is $\frac{a^2 x}{x_1}+\frac{b^2 y}{y_1}=a^2+b^2{ }_{\text {, put }}\left(x_1, y_1\right) \equiv(a \sec \theta, b \tan \theta)$.
$
\begin{aligned}
& \Rightarrow \quad \frac{a^2 x}{a \sec \theta}+\frac{b^2 y}{b \tan \theta}=a^2+b^2 \\
& \Rightarrow \quad a x \cos \theta+b y \cot \theta=a^2+b^2
\end{aligned}
$
Slope form:
The equation of normal of slope m to the hyperbola, $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ are $y=m x \mp \frac{m\left(a^2+b^2\right)}{\sqrt{a^2-m^2 b^2}}$ and coordinate of point of contact is $\left( \pm \frac{a^2}{\sqrt{a^2-m^2 b^2}}, \mp \frac{m b^2}{\sqrt{a^2-m^2 b^2}}\right)$
The equation of normal at $(a \sec \theta, b \tan \theta)$ to the hyperbola, $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is $a x \cos \theta+b y \cot \theta=a^2+b^2$
$\Rightarrow \quad y=-\frac{a \sin \theta}{b} x+\frac{a^2+b^2}{b \cot \theta}$
Let, $\quad-\frac{\mathrm{a} \sin \theta}{\mathrm{b}}=\mathrm{m}$
$\therefore \quad \sin \theta=-\frac{b m}{a}$
$\therefore \quad \cot \theta= \pm \frac{\sqrt{a^2-b^2 m^2}}{b m}$
Hence, the equation of normal become
$y=m x \mp \frac{m\left(a^2+b^2\right)}{\sqrt{a^2-m^2 b^2}}$, where $m \in\left[-\frac{a}{b}, \frac{a}{b}\right]$
Pair of Tangents
The combined equation of pair of tangents from the point $P\left(x_1, y_1\right)$ to the hyperbola
$
\begin{aligned}
& \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \text { is }\left(\frac{x^2}{a^2}-\frac{y^2}{b^2}-1\right)\left(\frac{x_1^2}{a^2}-\frac{y_1^2}{b^2}-1\right)=\left(\frac{x x_1}{a^2}-\frac{y y_1}{b^2}-1\right)^2 \\
& \text { or, } \quad S S_1=T^2 \\
& \text { where, } \quad \mathrm{S}=\frac{\mathrm{x}^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}-1 \\
& \mathrm{~S}_1=\frac{\mathrm{x}_1^2}{\mathrm{a}^2}-\frac{\mathrm{y}_1^2}{\mathrm{~b}_2^2}-1 \\
& \mathrm{~T}=\frac{\mathrm{xx}_1}{\mathrm{a}^2}-\frac{\mathrm{yy}_1}{\mathrm{~b}^2}-1
\end{aligned}
$
Note:
The formula $\mathbf{S S}_{\mathbf{1}}=\mathbf{T}^{\mathbf{2}}$ can be used to find the combined equation of pair of tangents for any general hyperbola as well.
Chord of Contact
The equation of chord of contact of tangents from the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is $\frac{\mathrm{xx}_1}{\mathrm{a}^2}-\frac{\mathrm{yy}_1}{\mathrm{~b}^2}=1$ i.e. $\mathbf{T}=\mathbf{0}$ which is chord of contact $Q R$.
Equation of Chord bisected at a given point:
The equation of chord of the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ bisected at a given point $P\left(x_1, y_1\right)$ is $\frac{\mathrm{xx}_1}{\mathrm{a}^2}-\frac{\mathrm{yy}_1}{\mathrm{~b}^2}-1=\frac{\mathrm{x}_1^2}{\mathrm{a}^2}-\frac{\mathrm{y}^2}{\mathrm{~b}^2}-1$
or, $\mathrm{T}=\mathrm{S}_1$
Note:
These formulae can be used for any general hyperbola as well.
"Stay in the loop. Receive exam news, study resources, and expert advice!"