UPES B.Tech Admissions 2025
Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 15th May
76 Questions around this concept.
If the normal to the ellipse $3 x^2+4 y^2=12$ at a point P on its parallel to the line, $2 x+y=4$ and the tangent to the ellipse at P passes through $Q(4,4)$ then $P Q$ is equal to :
If the normal at the point to the ellipse
intersects it again at the point
then
is equal to
The equation of normal at the point of the ellipse
is
If the normal at any point P on the ellipse cut the major and minor axes in G and g respectively and C in the center of the ellipse, then
The area of the rectangle formed by the perpendiculars from the centre of the ellipse to the tangent and normal at the point-whose eccentric angle is
The equation of the normal to the ellipse
The equation of the normal to the ellipse at the positive end of the latus-rectum is
Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 15th May
Merit Scholarships | NAAC A+ Accredited | Top Recruiters : E&Y, CYENT, Nvidia, CISCO, Genpact, Amazon & many more
The locus of a point, from where tangents to the rectangular hyperbola contain an angle
is:
The angle between the pair of tangents drawn to the ellipse from the point (1,2) is:
The angle between the pair of tangents drawn from the point to the ellipse
Equation of Normal in Point Form and Parametric Form
Point form
The equation of normal at $\left(x_1, y_1\right)$ to the ellipse, $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is $\frac{a^2 x}{x_1}-\frac{b^2 y}{y_1}=a^2-b^2$.
Proof:
We know that the equation of tangent in point from at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$
$
\frac{x x_1}{a^2}+\frac{y y_1}{b^2}=1
$
Slope of tangent at $\left(x_1, y_1\right)$ is $-\frac{b^2 x_1}{a^2 y_1}$
$\therefore \quad$ Slope of normal at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\frac{\mathrm{a}^2 \mathrm{y}_1}{\mathrm{~b}^2 \mathrm{x}_1}$
Hence, the equation of normal at point $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is
$
\left(\mathrm{y}-\mathrm{y}_1\right)=\frac{\mathrm{a}^2 \mathrm{y}_1}{\mathrm{~b}^2 \mathrm{x}_1}\left(\mathrm{x}-\mathrm{x}_1\right)
$
or $\quad \frac{a^2 x}{x_1}-\frac{b^2 y}{y_1}=a^2-b^2$
Parametric form
The equation of normal at $(a \cos \theta, b \sin \theta)$ to the ellipse, $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is $a x \sec \theta-b y \csc \theta=a^2-b^2$
Proof:
In the equation of point form of normal, replace $\mathrm{x}_1$ with $a \cdot \cos \theta$ and $\mathrm{y}_1$ with $\mathrm{b} \cdot \sin \theta$.
$
\begin{aligned}
& \frac{\mathrm{a}^2 \mathrm{x}}{\mathrm{x}_1}-\frac{\mathrm{b}^2 \mathrm{y}}{\mathrm{y}_1}=\mathrm{a}^2-\mathrm{b}^2 \\
& \mathrm{x}_1 \rightarrow \mathrm{a} \cos \theta \\
& \mathrm{y}_1 \rightarrow \mathrm{~b} \sin \theta \\
& \frac{\mathrm{a}^2 \mathrm{x}}{\mathrm{a} \cos \theta}-\frac{\mathrm{b}^2 \mathrm{y}}{\mathrm{~b} \sin \theta}=\mathrm{a}^2-\mathrm{b}^2 \\
& \mathrm{ax} \sec \theta-\mathrm{by} \csc \theta=\mathrm{a}^2-\mathrm{b}^2
\end{aligned}
$
Equation of Normal in Slope form
The equation of normal of slope m to the ellipse, $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ $y=m x \mp \frac{m\left(a^2-b^2\right)}{\sqrt{a^2+m^2 b^2}}$ and coordinate of point of contact is $\left( \pm \frac{a^2}{\sqrt{a^2+m^2 b^2}}, \pm \frac{m b^2}{\sqrt{a^2+m^2 b^2}}\right)$
We know that the equation of normal of the ellipse in point form $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is
$
\frac{a^2 x}{x_1}-\frac{b^2 y}{y_1}=a^2-b^2
$
Let ' $m$ ' be the slope of the normal (i), then
$
\begin{aligned}
\mathrm{m} & =\frac{\mathrm{a}^2 \mathrm{y}_1}{\mathrm{~b}^2 \mathrm{x}_1} \\
\Rightarrow \quad \mathrm{y}_1 & =\frac{\mathrm{b}^2 \mathrm{x}_1 \mathrm{~m}}{\mathrm{a}^2}
\end{aligned}
$
Since, $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ lies on on the ellipse, then
$
\frac{x_1^2}{a^2}+\frac{y_1^2}{b^2}=1
$
put the value of $y_1$ in the above equation,
$
\frac{x_1^2}{a^2}+\frac{b^4 x_1^2 m^2}{a^4 b^2}=1 \quad \Rightarrow \quad \frac{x_1^2}{a^2}+\frac{b^2 x_1^2 m^2}{a^4}=1
$
or
from eq (ii) $\quad \mathrm{y}_1= \pm \frac{\mathrm{mb}^2}{\sqrt{\left(\mathrm{a}^2+\mathrm{b}^2 \mathrm{~m}^2\right)}}$
$\therefore$ equation of normal in in terms of 'm' is
$
\begin{aligned}
& y-\left( \pm \frac{m^2}{\sqrt{a^2+b^2 \mathrm{~m}^2}}\right)=m\left(x-\left( \pm \frac{a^2}{\sqrt{a^2+b^2 \mathrm{~m}^2}}\right)\right) \\
\Rightarrow \quad & y=m x \mp \frac{m\left(a^2-b^2\right)}{\sqrt{\left(a^2+b^2 \mathrm{~m}^2\right)}}
\end{aligned}
$
The coordinate of the point of contact is $\left( \pm \frac{a^2}{\sqrt{a^2+b^2 m^2}}, \pm \frac{m b^2}{\sqrt{a^2+b^2 m^2}}\right)$.
Pair of Tangents
The equation of pair of tangent from the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to the Ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is $\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}-1\right)\left(\frac{x_1^2}{a^2}+\frac{y_1^2}{b^2}-1\right)=\left(\frac{x_1}{a^2}+\frac{y y_1}{b^2}-1\right)^2$ or, $\mathrm{SS}_1=\mathrm{T}^2$ where, $S=\frac{x^2}{a^2}+\frac{y^2}{b^2}-1$
$
\begin{aligned}
& \mathrm{S}_1=\frac{\mathrm{x}_1^2}{\mathrm{a}^2}+\frac{\mathrm{y}_1^2}{\mathrm{~b}^2}-1 \\
& \mathrm{~T}=\frac{\mathrm{xx}_1}{\mathrm{a}^2}+\frac{\mathrm{yy}_1}{\mathrm{~b}^2}-1
\end{aligned}
$
Where points Q and R are the point of contacts of the tangents to the ellipse.
Note:
The equation $\mathbf{S S}_{\mathbf{1}}=\mathbf{T}^{\mathbf{2}}$ can be used to find the combined equation of tangents for any general ellipse as well.
Chord of Contact:
The equation of chord of contact of tangents from the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to the Ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is $\frac{x_1}{a^2}+\frac{y_1}{b^2}=1$.
QR is a chord of contact.
Equation of Chord bisected at a given point
The equation of chord of the ellipse $\frac{x^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ bisected at a given point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\frac{\mathrm{xx}_1}{\mathrm{a}^2}+\frac{\mathrm{yy}_1}{\mathrm{~b}^2}-1=\frac{\mathrm{x}_1^2}{\mathrm{a}^2}+\frac{\mathrm{y}_1^2}{\mathrm{~b}^2}-1$
or, $\mathrm{T}=\mathrm{S}_1$
Note:
These formulae can be used for any general ellipse as well
"Stay in the loop. Receive exam news, study resources, and expert advice!"