SRM NIRF Ranking 2024 - SRM Institute of Science and Technology

Equation of Normal in Point Form and Parametric Form - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 76 Questions around this concept.

Solve by difficulty

If the normal to the ellipse $3 x^2+4 y^2=12$ at a point P on its parallel to the line, $2 x+y=4$ and the tangent to the ellipse at P passes through $Q(4,4)$ then $P Q$ is equal to :

If the normal at the point \mathrm P(\theta ) to the ellipse  \frac{\mathrm x^2}{14}+\frac{\mathrm y^2}{5}=1   intersects it again at the point  \mathrm Q(2\theta )  then \cos \theta is equal to

The equation of normal at the point \left ( 0,3 \right ) of the ellipse \mathrm{9 x^2+5 y^2=45} is

If the normal at any point P on the ellipse cut the major and minor axes in G and g respectively and C in the center of the ellipse, then 

The area of the rectangle formed by the perpendiculars from the centre of the ellipse to the tangent and normal at the point-whose eccentric angle is \pi / 4 \text {, is }

The equation of the normal to the ellipse \mathrm{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 \text { at } \theta=\frac{\pi}{2} \text { is }} 

The equation of the normal to the ellipse \mathrm{\frac{x^2}{a^2}+\frac{y^2}{b^2}=1} at the positive end of the latus-rectum is

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements | Last Date to Apply: 15th May

ICFAI University Hyderabad B.Tech Admissions 2025

Merit Scholarships | NAAC A+ Accredited | Top Recruiters : E&Y, CYENT, Nvidia, CISCO, Genpact, Amazon & many more

The locus of a point, from where tangents to the rectangular hyperbola \mathrm{ x^2-y^2=a^2 } contain an angle \mathrm{ 45^{\circ} } is:

The angle between the pair of tangents drawn to the ellipse \mathrm{3 x^2+2 y^2=5} from the point (1,2) is:

JEE Main 2025 College Predictor
Know your college admission chances in NITs, IIITs and CFTIs, many States/ Institutes based on your JEE Main rank by using JEE Main 2025 College Predictor.
Use Now

The angle between the pair of tangents drawn from the point \mathrm{\left ( 1,2 \right ) } to the ellipse \mathrm{3 x^2+2 y^2=5 }

Concepts Covered - 4

Equation of Normal in Point Form and Parametric Form

Equation of Normal in Point Form and Parametric Form

Point form

The equation of normal at $\left(x_1, y_1\right)$ to the ellipse, $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is $\frac{a^2 x}{x_1}-\frac{b^2 y}{y_1}=a^2-b^2$.

Proof:

We know that the equation of tangent in point from at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$

$
\frac{x x_1}{a^2}+\frac{y y_1}{b^2}=1
$
Slope of tangent at $\left(x_1, y_1\right)$ is $-\frac{b^2 x_1}{a^2 y_1}$
$\therefore \quad$ Slope of normal at $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\frac{\mathrm{a}^2 \mathrm{y}_1}{\mathrm{~b}^2 \mathrm{x}_1}$
Hence, the equation of normal at point $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is

$
\left(\mathrm{y}-\mathrm{y}_1\right)=\frac{\mathrm{a}^2 \mathrm{y}_1}{\mathrm{~b}^2 \mathrm{x}_1}\left(\mathrm{x}-\mathrm{x}_1\right)
$

or $\quad \frac{a^2 x}{x_1}-\frac{b^2 y}{y_1}=a^2-b^2$

Parametric form
The equation of normal at $(a \cos \theta, b \sin \theta)$ to the ellipse, $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is $a x \sec \theta-b y \csc \theta=a^2-b^2$

Proof:

In the equation of point form of normal, replace $\mathrm{x}_1$ with $a \cdot \cos \theta$ and $\mathrm{y}_1$ with $\mathrm{b} \cdot \sin \theta$.

$
\begin{aligned}
& \frac{\mathrm{a}^2 \mathrm{x}}{\mathrm{x}_1}-\frac{\mathrm{b}^2 \mathrm{y}}{\mathrm{y}_1}=\mathrm{a}^2-\mathrm{b}^2 \\
& \mathrm{x}_1 \rightarrow \mathrm{a} \cos \theta \\
& \mathrm{y}_1 \rightarrow \mathrm{~b} \sin \theta \\
& \frac{\mathrm{a}^2 \mathrm{x}}{\mathrm{a} \cos \theta}-\frac{\mathrm{b}^2 \mathrm{y}}{\mathrm{~b} \sin \theta}=\mathrm{a}^2-\mathrm{b}^2 \\
& \mathrm{ax} \sec \theta-\mathrm{by} \csc \theta=\mathrm{a}^2-\mathrm{b}^2
\end{aligned}
$
 

Equation of Normal in Slope form

Equation of Normal in Slope form

The equation of normal of slope m to the ellipse, $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ $y=m x \mp \frac{m\left(a^2-b^2\right)}{\sqrt{a^2+m^2 b^2}}$ and coordinate of point of contact is $\left( \pm \frac{a^2}{\sqrt{a^2+m^2 b^2}}, \pm \frac{m b^2}{\sqrt{a^2+m^2 b^2}}\right)$

We know that the equation of normal of the ellipse in point form $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is

$
\frac{a^2 x}{x_1}-\frac{b^2 y}{y_1}=a^2-b^2
$
Let ' $m$ ' be the slope of the normal (i), then

$
\begin{aligned}
\mathrm{m} & =\frac{\mathrm{a}^2 \mathrm{y}_1}{\mathrm{~b}^2 \mathrm{x}_1} \\
\Rightarrow \quad \mathrm{y}_1 & =\frac{\mathrm{b}^2 \mathrm{x}_1 \mathrm{~m}}{\mathrm{a}^2}
\end{aligned}
$
Since, $\left(\mathrm{x}_1, \mathrm{y}_1\right)$ lies on on the ellipse, then

$
\frac{x_1^2}{a^2}+\frac{y_1^2}{b^2}=1
$

put the value of $y_1$ in the above equation,

$
\frac{x_1^2}{a^2}+\frac{b^4 x_1^2 m^2}{a^4 b^2}=1 \quad \Rightarrow \quad \frac{x_1^2}{a^2}+\frac{b^2 x_1^2 m^2}{a^4}=1
$

or
from eq (ii) $\quad \mathrm{y}_1= \pm \frac{\mathrm{mb}^2}{\sqrt{\left(\mathrm{a}^2+\mathrm{b}^2 \mathrm{~m}^2\right)}}$
$\therefore$ equation of normal in in terms of 'm' is

$
\begin{aligned}
& y-\left( \pm \frac{m^2}{\sqrt{a^2+b^2 \mathrm{~m}^2}}\right)=m\left(x-\left( \pm \frac{a^2}{\sqrt{a^2+b^2 \mathrm{~m}^2}}\right)\right) \\
\Rightarrow \quad & y=m x \mp \frac{m\left(a^2-b^2\right)}{\sqrt{\left(a^2+b^2 \mathrm{~m}^2\right)}}
\end{aligned}
$
The coordinate of the point of contact is $\left( \pm \frac{a^2}{\sqrt{a^2+b^2 m^2}}, \pm \frac{m b^2}{\sqrt{a^2+b^2 m^2}}\right)$.

Pair of Tangent

Pair of Tangents
The equation of pair of tangent from the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to the Ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is $\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}-1\right)\left(\frac{x_1^2}{a^2}+\frac{y_1^2}{b^2}-1\right)=\left(\frac{x_1}{a^2}+\frac{y y_1}{b^2}-1\right)^2$ or, $\mathrm{SS}_1=\mathrm{T}^2$ where, $S=\frac{x^2}{a^2}+\frac{y^2}{b^2}-1$

$
\begin{aligned}
& \mathrm{S}_1=\frac{\mathrm{x}_1^2}{\mathrm{a}^2}+\frac{\mathrm{y}_1^2}{\mathrm{~b}^2}-1 \\
& \mathrm{~T}=\frac{\mathrm{xx}_1}{\mathrm{a}^2}+\frac{\mathrm{yy}_1}{\mathrm{~b}^2}-1
\end{aligned}
$

Where points Q and R are the point of contacts of the tangents to the ellipse.

Note:

The equation $\mathbf{S S}_{\mathbf{1}}=\mathbf{T}^{\mathbf{2}}$ can be used to find the combined equation of tangents for any general ellipse as well.

Chord of Contact

Chord of Contact:
The equation of chord of contact of tangents from the point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to the Ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is $\frac{x_1}{a^2}+\frac{y_1}{b^2}=1$.

QR is a chord of contact.
Equation of Chord bisected at a given point
The equation of chord of the ellipse $\frac{x^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ bisected at a given point $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ is $\frac{\mathrm{xx}_1}{\mathrm{a}^2}+\frac{\mathrm{yy}_1}{\mathrm{~b}^2}-1=\frac{\mathrm{x}_1^2}{\mathrm{a}^2}+\frac{\mathrm{y}_1^2}{\mathrm{~b}^2}-1$
or, $\mathrm{T}=\mathrm{S}_1$

Note:

These formulae can be used for any general ellipse as well

Study it with Videos

Equation of Normal in Point Form and Parametric Form
Equation of Normal in Slope form
Pair of Tangent

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top