JEE Main Cutoff for IIIT Srirangam 2024 - Check Here

Differential equations with variables separable - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 37 Questions around this concept.

Solve by difficulty

 If \left ( 2+\sin x \right )\: \frac{dy}{dx}\: +\left ( y+1 \right )\cos x= 0

and y(0)=1,then  y\left ( \frac{\pi }{2} \right )   is equal to :

If    \dpi{100} \frac{dy}{dx}=y+3> 0\; and\; y(0)=2,then\; y(1n\: 2)  is equal to

Concepts Covered - 2

Differential equations with variables separable

The differential of the form $\frac{d y}{d x}=f(x) g(y)$ where $f(x)$ is a function of $x$ and $g(y)$ is a function of $y$, are said to be variable separrable form.

Rewrite the equation as
$
\frac{d y}{g(y)}=f(x) d x \quad[\text { where } g(y) \neq 0]
$

This process is separating the variables.
Now, integrating both sides, we get
$
\int \frac{\mathrm{dy}}{\mathrm{~g}(\mathrm{y})}=\int \mathrm{f}(\mathrm{x}) \mathrm{dx}+\mathrm{c}
$

By this, we get the solution of the differential equation

Let’s see one illustration for a better understanding

Solution of the differential equation $\frac{\mathrm{dy}}{\mathrm{dx}}=\left(\mathrm{e}^{\mathrm{x}}+1\right)\left(\mathrm{y}^2+1\right)$
Rewrite the differential equation as
$
\frac{d y}{1+y^2}=\left(e^x+1\right) d x
$

Integrating both sides, we get
$
\begin{aligned}
& \int \frac{\mathrm{dy}}{1+\mathrm{y}^2}=\int\left(\mathrm{e}^{\mathrm{x}}+1\right) \mathrm{dx} \\
& \Rightarrow \tan ^{-1} y=e^x+x+c \\
& \Rightarrow y=\tan \left(e^x+x+c\right)
\end{aligned}
$

 

Differential Equation Reducible to Variable Separable Form

A differential equation of the form $\frac{d y}{d x}=f(a x+b y+c)$ where $\mathrm{a}, \mathrm{b}$ and c are constants, can be converted into an equation with variables separable by the substitution $\mathrm{v}=\mathrm{ax}+\mathrm{by}+\mathrm{c}$.
$
\begin{aligned}
& \frac{d y}{d x}=f(a x+b y+c) \\
& \mathrm{v}=\mathrm{ax}+\mathrm{by}+\mathrm{c} . \\
& \therefore \quad \frac{d v}{d x}=a+b \frac{d y}{d x} \text { or, } \frac{d y}{d x}=\frac{\frac{d v}{d x}-a}{b} \\
& \Rightarrow \frac{\frac{\mathrm{~d} v}{\mathrm{dx}}-\mathrm{a}}{\mathrm{~b}}=\mathrm{f}(\mathrm{v}) \Rightarrow \frac{\mathrm{d} v}{\mathrm{dx}}=\mathrm{bf}(\mathrm{v})+\mathrm{a} \\
& \Rightarrow \frac{\mathrm{dv}}{\mathrm{bf}(\mathrm{v})+\mathrm{a}}=\mathrm{dx}
\end{aligned}
$

In the differential equation (ii), the variables x and v are separated.
Integrating (ii), we get
$
\begin{aligned}
& \Rightarrow \quad \int \frac{\mathrm{dv}}{\mathrm{bf}(\mathrm{v})+\mathrm{a}}=\int \mathrm{dx}+\mathrm{C} \\
& \Rightarrow \quad \int \frac{\mathrm{dv}}{\mathrm{bf}(\mathrm{v})+\mathrm{a}}=\mathrm{x}+\mathrm{C}, \text { where } \mathrm{v}=\mathrm{ax}+\mathrm{by}+\mathrm{c}
\end{aligned}
$

This represents the general solution of the differential equation (i).

Study it with Videos

Differential equations with variables separable
Differential Equation Reducible to Variable Separable Form

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Differential equations with variables separable

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 10.4

Line : 45

Differential Equation Reducible to Variable Separable Form

Mathematics for Joint Entrance Examination JEE (Advanced) : Calculus

Page No. : 10.4

Line : 47

E-books & Sample Papers

Get Answer to all your questions

Back to top