Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Coplanarity of Two Lines is considered one of the most asked concept.
14 Questions around this concept.
If the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}$ intersect, then k is equal to
We studied in the previous concept that a line $\frac{x-x_1}{l}=\frac{y-y_1}{m}=\frac{z-z_1}{n}$ to lie in the plane $\mathrm{ax}+\mathrm{by}+\mathrm{cz}+\mathrm{d}=0$ iff $a l+b m+c n=0$ and $a x_1+b y_1+c z_1+d=0$ Thus, the general equation of the plane containing a straight line
$
\begin{aligned}
& \frac{x-x_1}{l}=\frac{y-y_1}{m}=\frac{z-z_1}{n} \text { is } \\
& a\left(x-x_1\right)+b\left(y-y_1\right)+c\left(z-z_1\right)=0
\end{aligned}
$
where, $\quad a l+b m+c n=0$
The equation of the plane containing a straight line $\frac{x-x_1}{l}=\frac{y-y_1}{m}=\frac{z-z_1}{n}$ and parallel to the straight line $\frac{x-x_2}{l_1}=\frac{y-y_2}{m_1}=\frac{z-z_2}{n_1}$ is
$
\left|\begin{array}{ccc}
x-x_1 & y-y_1 & z-z_1 \\
l & m & n \\
l_1 & m_1 & n_1
\end{array}\right|=0
$
Hence, the equation of the plane containing two given straight lines
$\begin{array}{ll} & \frac{x-x_1}{l}=\frac{y-y_1}{m}=\frac{z-z_1}{n} \\ \text { and } \quad & \frac{x-x_2}{l_1}=\frac{y-y_2}{m_1}=\frac{z-z_2}{n_1} \\ \text { or } & \left|\begin{array}{ccc}x-x_1 & y-y_1 & z-z_1 \\ l & m & n \\ l_1 & m_1 & n_1\end{array}\right|=0 \\ \left|\begin{array}{ccc}x-x_2 & y-y_2 & z-z_2 \\ l & m & n \\ l_1 & m_1 & n_1\end{array}\right|=0\end{array}$
And, the condition of coplanarity of the given straight lines is given by:
$
\left|\begin{array}{ccc}
x_2-x_1 & y_2-y_1 & z_2-z_1 \\
l & m & n \\
l_1 & m_1 & n_1
\end{array}\right|=0
$
In Vector Form:
If the line $\mathrm{Ł}_1: \overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}_1+\lambda \overrightarrow{\mathbf{b}}_1$ and $\mathrm{Ł}_2: \overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}_2+\lambda \overrightarrow{\mathbf{b}}_2$ are coplanar then,
$
\left[\begin{array}{lll}
\overrightarrow{\mathbf{r}}_1 & \overrightarrow{\mathbf{b}}_1 & \overrightarrow{\mathbf{b}}_2
\end{array}\right]=\left[\begin{array}{lll}
\overrightarrow{\mathbf{r}}_2 & \overrightarrow{\mathbf{b}}_1 & \overrightarrow{\mathbf{b}}_2
\end{array}\right]
$
and the equation of the plane containing them is
$
\begin{aligned}
& {\left[\begin{array}{lll}
\overrightarrow{\mathbf{r}} & \overrightarrow{\mathbf{b}}_1 & \overrightarrow{\mathbf{b}}_2
\end{array}\right] } \\
&=\left[\begin{array}{lll}
\overrightarrow{\mathbf{r}}_1 & \overrightarrow{\mathbf{b}}_1 & \overrightarrow{\mathbf{b}}_2
\end{array}\right] \\
& \text { or } {\left[\begin{array}{lll}
\overrightarrow{\mathbf{r}} & \overrightarrow{\mathbf{b}}_1 & \overrightarrow{\mathbf{b}}_2
\end{array}\right] }
\end{aligned}=\left[\begin{array}{lll}
\overrightarrow{\mathbf{r}}_2 & \overrightarrow{\mathbf{b}}_1 & \overrightarrow{\mathbf{b}}_2
\end{array}\right] .
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"