Careers360 Logo
NIRF Ranking 2024 (Out) - List of Top Engineering Colleges in India

Coplanarity of Two Lines - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Coplanarity of Two Lines is considered one of the most asked concept.

  • 14 Questions around this concept.

Solve by difficulty

If the lines  \frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}  and  \frac{x-3}{1}=\frac{y-k}{2}=\frac{z}{1}   intersect, then k is equal to

Concepts Covered - 0

Coplanarity of Two Lines

We studied in the previous concept that a line \frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n} to lie in the plane ax + by + cz + d = 0 iff  a l+b m+c n=0 \text { and } a x_{1}+b y_{1}+c z_{1}+d=0

Thus, the general equation of the plane containing a straight line

\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;} {\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n} \text { is }} \\\\ \mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}{a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0}\\ \\ \text{where,}\;\;\;\;\;\;{a l+b m+c n=0}

The equation of the plane containing a straight line \frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n} and parallel to the straight line \frac{x-x_{2}}{l_{1}}=\frac{y-y_{2}}{m_{1}}=\frac{z-z_{2}}{n_{1}} is

 

\left|\begin{array}{ccc}{x-x_{1}} & {y-y_{1}} & {z-z_{1}} \\ {l} & {m} & {n} \\ {l_{1}} & {m_{1}} & {n_{1}}\end{array}\right|=0

Hence, the equation of the plane containing two given straight lines

\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\frac{x-x_{1}}{l}=\frac{y-y_{1}}{m}=\frac{z-z_{1}}{n}\\\\\text{and}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\frac{x-x_{2}}{l_{1}}=\frac{y-y_{2}}{m_{1}}=\frac{z-z_{2}}{n_{1}}\\\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\left|\begin{array}{ccc}{x-x_{1}} & {y-y_{1}} & {z-z_{1}} \\ {l} & {m} & {n} \\ {l_{1}} & {m_{1}} & {n_{1}}\end{array}\right|=0\\\\\\\text{or}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left|\begin{array}{ccc}{x-x_{2}} & {y-y_{2}} & {z-z_{2}} \\ {l} & {m} & {n} \\ {l_{1}} & {m_{1}} & {n_{1}}\end{array}\right|=0

 

And, the condition of coplanarity of the given straight lines is given by:

\left|\begin{array}{ccc}{x_{2}-x_{1}} & {y_{2}-y_{1}} & {z_{2}-z_{1}} \\ {l} & {m} & {n} \\ {l_{1}} & {m_{1}} & {n_{1}}\end{array}\right|=0

In Vector Form:

If the line \L_{1}: \vec{\mathbf r}= \vec{\mathbf r}_1+\lambda \vec{\mathbf b}_1 \text{ and } \L_{2}: \vec{\mathbf r}= \vec{\mathbf r}_2+\lambda \vec{\mathbf b}_2  are coplanar then,

\left [ \vec{\mathbf r}_1\;\; \vec{\mathbf b}_1\;\;\vec{\mathbf b}_2 \right ]=\left [ \vec{\mathbf r}_2\;\; \vec{\mathbf b}_1\;\;\vec{\mathbf b}_2 \right ] 

and the equation of plane containing them is 

\\\mathrm{\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;}\left [ \vec{\mathbf r}\;\; \vec{\mathbf b}_1\;\;\vec{\mathbf b}_2 \right ]=\left [ \vec{\mathbf r}_1\;\; \vec{\mathbf b}_1\;\;\vec{\mathbf b}_2 \right ]\\\\\text{or}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left [ \vec{\mathbf r}\;\; \vec{\mathbf b}_1\;\;\vec{\mathbf b}_2 \right ]=\left [ \vec{\mathbf r}_2\;\; \vec{\mathbf b}_1\;\;\vec{\mathbf b}_2 \right ]

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top