Download Careers360 App
JEE Main 2026 - Exam Date, Registration, Syllabus, Preparation Tips, Books, Exam Pattern

Application of AM-GM Inequality - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 28 Questions around this concept.

Solve by difficulty

If $x \geq y, y>1$, Then $\log _x \frac{x}{y}+\log _y \frac{y}{x}$   can never be

The number of real solution of the equation  $Sin \left ( e^{x} \right )=5^{x}+5^{-x}\, \, \, is$

The number of real solution of $\sin e^{x}.\cos e^{x}=2^{x-2}+2^{-x-2}$ is 

The minimum value of $4^{\mathrm{x}}+4^{1-\mathrm{x}}, x \in R$ is

 If three positive numbers a, b, and c are in A.P. such that abc=8, then the minimum possible value of b is :

Concepts Covered - 3

Application of AM-GM Part 1

Application of AM-GM
If $a_1, a_2, a_3, \ldots \ldots ., a_n$ are n positive variables and k is a constant
If $a_1+a_2+a_3+\ldots \ldots .+a_n=k$ (constant), then the greatest value of $a_1 \cdot a_2 \cdot a_3$. $\qquad$ $\cdot a_n$ is $(\mathrm{k})^{\mathrm{n}}$ and this is possible when $a_1=a_2=a_3=\ldots .=a_n$.
$\qquad$

Proof:

$$
\begin{aligned}
& \text { as, } \mathrm{AM} \geq \mathrm{GM} \\
& \therefore \frac{\mathrm{a}_1+\mathrm{a}_2+\mathrm{a}_3+\ldots \ldots+\mathrm{a}_{\mathrm{n}}}{\mathrm{n}} \geq\left(\mathrm{a}_1 \cdot \mathrm{a}_2 \cdot \mathrm{a}_3 \cdot \ldots \ldots \cdot \mathrm{a}_{\mathrm{n}}\right)^{\frac{1}{\mathrm{n}}} \\
& \Rightarrow \quad \frac{\mathrm{k}}{\mathrm{n}} \geq\left(\mathrm{a}_1 \cdot \mathrm{a}_2 \cdot \mathrm{a}_3 \cdot \ldots \ldots \cdot \mathrm{a}_{\mathrm{n}}\right)^{\frac{1}{n}} \\
& \text { or }\left(\mathrm{a}_1 \cdot \mathrm{a}_2 \cdot \mathrm{a}_3 \cdot \ldots \ldots \cdot \mathrm{a}_{\mathrm{n}}\right) \leq\left(\frac{\mathrm{k}}{\mathrm{n}}\right)^{\mathrm{n}}
\end{aligned}
$$
 

Application of AM-GM - Part 2

Application of AM-GM
$a_1, a_2, a_3, \ldots \ldots ., a_n$ are n positive variables and k is a constant
If $\mathrm{a}_1 \cdot \mathrm{a}_2 \cdot \mathrm{a}_3 \cdot \ldots \ldots \cdot \mathrm{a}_{\mathrm{n}}=\mathrm{k}$, where k is constant, then the value of $\mathrm{a}_1+\mathrm{a}_2+\mathrm{a}_3+\ldots \ldots+\mathrm{a}_{\mathrm{n}}$ is minimum when all the terms are equal to each other, i.e. $\mathrm{a}_1=\mathrm{a}_2=\mathrm{a}_3=\ldots \ldots=\mathrm{a}_{\mathrm{n}}$.
So that the least value of $a_1+a_2+a_3+\ldots \ldots+a_n$ is $n(k)^{1 / n}$.

Proof:

To prove this we will be using the fact that A.M. $\geq$ G.M

So,

$
\begin{aligned}
& \frac{a_1+a_2+a_3+\ldots \ldots+a_n}{n} \geq\left(a_1 \cdot a_2 \cdot a_3 \cdot \ldots \ldots \cdot a_n\right)^{1 / n}=k^{1 / n} \\
\Rightarrow & \frac{a_1+a_2+a_3+\ldots \ldots+a_n}{n} \geq k^{1 / n} \\
\Rightarrow & a_1+a_2+a_3+\ldots \ldots+a_n \geq n \cdot k^{1 / n}
\end{aligned}
$
Here, $a_1=a_2=a_3=\ldots \ldots=a_n$
$\therefore$ least value of $a_1+a_2+a_3+\ldots \ldots+a_n$ is $n \cdot k^{1 / n}$

Application of A.M., G.M. and H.M.

Application of A.M., G.M., and H.M.
Let $\mathrm{A}, \mathrm{G}$ and H are arithmetic, geometric and harmonic means of two positive real numbers a and b.

Then,

$
\mathrm{A}=\frac{a+b}{2}, \mathrm{G}=\sqrt{a \cdot b} \text { and } \mathrm{H}=\frac{2 a b}{a+b}
$

1. $A \geq G \geq H$

$
\begin{aligned}
& \mathrm{A}-\mathrm{G}=\frac{a+b}{2}-\sqrt{a b}=\frac{(\sqrt{a}-\sqrt{b})^2}{2} \geq 0 \\
& \Rightarrow \mathrm{~A}-\mathrm{G} \geq 0 \\
& \Rightarrow \mathrm{~A} \geq \mathrm{G}
\end{aligned}
$

Note that $\mathrm{A}=\mathrm{G}$ when $\mathrm{a}=\mathrm{b}$
Now,

$
\begin{aligned}
& \mathrm{G}-\mathrm{H}=\sqrt{a b}-\frac{2 a b}{a+b} \\
&=\sqrt{a b}\left(\frac{a+b-2 \sqrt{a b}}{a+b}\right) \\
&=\frac{\sqrt{a b}}{a+b}(\sqrt{a}-\sqrt{b})^2 \geq 0 \\
& \Rightarrow \mathrm{G} \geq \mathrm{H}
\end{aligned}
$
Again $\mathrm{G}=\mathrm{H}$ when $\mathrm{a}=\mathrm{b}$
From (i) and (ii) we get

$
\mathrm{A} \geq \mathrm{G} \geq \mathrm{H}
$

Note:
- when $\mathbf{a}=\mathrm{b}$ then only, $\mathrm{A}=\mathrm{G}=\mathrm{H}$ If $a_1, a_2, a_3, \ldots ., a_n$ are n positive real numbers, then

$
\begin{aligned}
& \mathrm{A}=\text { A.M. of } a_1, a_2, a_3, \ldots ., a_n=\frac{a_1+a_2+a_3+\ldots .+a_n}{n} \\
& \mathrm{G}=\text { G.M. of } a_1, a_2, a_3, \ldots ., a_n=\left(a_1 \cdot a_2 \cdot a_3 \ldots \ldots . a_n\right)^{\frac{1}{n}}
\end{aligned}
$
$
\mathrm{H}=\mathrm{H} . \mathrm{M} . \text { of } a_1, a_2, a_3, \ldots \ldots, a_n=\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\ldots \ldots+\frac{1}{a_n}}
$
In such case also $A \geq G \geq H$
And $\mathrm{A}=\mathrm{G}=\mathrm{H}$, when $a_1=a_2=a_3=\ldots \ldots .=a_n$
2. $A, G$ and $H$ of 2 positive real numbers form a geometric progression, i.e. $G^2=A H$. we have,

$
\begin{aligned}
\mathrm{A} \cdot \mathrm{H} & =\frac{a+b}{\mathcal{2}} \times \frac{2 a b}{a+b} \\
& =a b=(\sqrt{a b})^2=\mathrm{G}^2
\end{aligned}
$
Hence, $\quad \mathrm{G}^2=\mathrm{AH}$

Study it with Videos

Application of AM-GM Part 1
Application of AM-GM - Part 2
Application of A.M., G.M. and H.M.

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Application of A.M., G.M. and H.M.

Mathematics for Joint Entrance Examination JEE (Advanced) : Algebra

Page No. : 5.21

Line : 4

E-books & Sample Papers

Get Answer to all your questions

Back to top