Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Angle between two straight line is considered one of the most asked concept.
54 Questions around this concept.
The angle between the lines represented by is:
FInd the obtuse angle b/w slopes $\sqrt{3}$ and $-\sqrt{3}$
Find the set of perpendicular lines joining the given 2 points
is
1)P= (1,2) and Q = (3,7)
2) R = (2,-1) and S = (1,7)
3) A = (-1,0) and B = (4,-2)
JEE Main 2025: Rank Predictor | Admit Card Link | January Session Exam Analysis
JEE Main 2025: Memory Based Question: Jan 24- Shift 1 | Jan 23- Shift 1 | Shift 2 | Jan 22- Shift 1 | Shift 2
JEE Main 2025: High Scoring Topics | Sample Papers | Mock Tests | PYQs
If A(-2,1), B(2,3) and C(-2,-4) are three points, then the angle between BA and BC is
The tangent of angle between the lines whose intercepts on the axes are a, – b and b, – a, respectively, is
Angle between two straight line
\begin{aligned}
&\text { Two lines are given with the slope } m_1 \text { and } m_2 \text {, then acute angle } \theta \text { between the lines is given by }\\
&\theta=\tan ^{-1}\left|\frac{\mathrm{~m}_1-\mathrm{m}_2}{1+\mathrm{m}_1 \mathrm{~m}_2}\right|
\end{aligned}.
Let $\mathrm{m}_1$ and $\mathrm{m}_2$ be the slope of two given straight lines and $\theta_1$ and $\theta_2$ is the inclinations
$
\therefore \mathrm{m}_1=\tan \theta_1 \text { and } \mathrm{m}_2=\tan \theta_2
$
let $\theta$ and $\pi-\theta$ be the angles between straight line $\left(\theta \neq \frac{\pi}{2}\right)$
from the figure
$
\begin{aligned}
& \theta_2=\theta+\theta_1 \quad \text { or } \quad \theta=\theta_1-\theta_2 \\
& \tan (\theta)=\tan \left(\theta_1-\theta_2\right) \\
& \tan (\theta)=\left(\frac{\tan \left(\theta_2\right)-\tan \theta_1}{1+\tan \left(\theta_1\right) \tan \left(\theta_2\right)}\right)=\left(\frac{\mathrm{m}_2-\mathrm{m}_1}{1+\mathrm{m}_2 \mathrm{~m}_1}\right)
\end{aligned}
$
Also, $\tan (\pi-\theta)=-\tan (\theta)=-\left(\frac{\mathrm{m}_2-\mathrm{m}_1}{1+\mathrm{m}_2 \mathrm{~m}_1}\right)$
$
\Rightarrow \theta=\tan ^{-1}\left[ \pm\left(\frac{\mathrm{m}_2-\mathrm{m}_1}{1+\mathrm{m}_2 \mathrm{~m}_1}\right)\right]
$
Hence, the acute angle between two straight lines is given as
$
\theta=\tan ^{-\mathbf{1}}\left|\left(\frac{\mathbf{m}_{\mathbf{2}}-\mathbf{m}_{\mathbf{1}}}{\mathbf{1}+\mathbf{m}_{\mathbf{2}} \mathbf{m}_{\mathbf{1}}}\right)\right|
$
Note:
1. If the angle between the two lines is $0^{\circ}$ or $\pi$ then lines are parallel two each other. In this case, $m_1=m_2$ where $m_1$ and $m_2$ are slopes of two lines.
2. If the angle between the two lines is $\frac{\pi}{2}$ or $-\frac{\pi}{2}$ then lines are perpendicular two each other. Then in this case $m_1 \cdot m_2=-1$ where, $m_1$ and $m_2$ are slopes of two lines.
3. Equation of two straight line given as $A_1 x+B_1 y+C_1=0$ and $A_2 x+B_2 y+C_2=0$. If these two lines are coincident then,
$
\frac{\mathrm{A}_1}{\mathrm{~A}_2}=\frac{\mathrm{B}_1}{\mathrm{~B}_2}=\frac{\mathrm{C}_1}{\mathrm{C}_2}
$
Illustriation
Find the angle between the line joining the points $(0,0),(2,6)$ with line joining the points $(2,3),(3,4)$
Let $A=(0,0), B=(2,6), C=(2,3)$ and $D=(3,4)$
Let $m_1$ is the slope of $A B$ and $m_2$ is slope of $C D$
$
\mathrm{m}_1=\frac{6-0}{2-0}=3 \text { and } \mathrm{m}_2=\frac{4-3}{3-2}=1
$
Let $\theta$ be the acute angle between the lines $A B$ and $C D$
$
\begin{aligned}
& \tan \theta=\left|\frac{\mathrm{m}_1-\mathrm{m}_2}{1+\mathrm{m}_1 \mathrm{~m}_2}\right|=\left|\frac{3-1}{1+3 \times 1}\right|=\frac{1}{2} \\
& \theta=\tan ^{-1}\left(\frac{1}{2}\right)
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"