NIT Surathkal JEE Main Cutoff 2025: Check Expected Ranks and Trends for BTech Admission

Truth Table - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Truth Table is considered one the most difficult concept.

  • 61 Questions around this concept.

Solve by difficulty

Which of the following is not a disjunction ?

What is negation of x > 5 ?

The contrapositive of the statement ‘If two numbers are not equal, then their squares are not equal’, is :

The contrapositive of the statement “I go to school if it does not rain” is :

The negation of the statement “If I become a teacher, then I will open a school” is

Which of the options is a sufficient condition for $p \Leftrightarrow q$ to be true? 

What is truth table for $\sim(p \wedge q)$ ?

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

ICFAI University Hyderabad B.Tech Admissions 2025

Merit Scholarships | NAAC A+ Accredited | Top Recruiters : E&Y, CYENT, Nvidia, CISCO, Genpact, Amazon & many more

$
\text { The negation of } \sim s \vee(\sim r \wedge s) \text { is equivalent to: }
$

The proposition  ${100} \sim (p\vee \sim q)\vee \sim (p\vee q)$  is logically equivalent to :

 

 

JEE Main 2025 College Predictor
Know your college admission chances in NITs, IIITs and CFTIs, many States/ Institutes based on your JEE Main rank by using JEE Main 2025 College Predictor.
Use Now

Which one of the following Boolean expressions is a tautology?

Concepts Covered - 1

Truth Table

Truth Value of a Statement

As we know a statement is either true or false. The truth or falsity of a statement is called truth value.

If the statement is true, then the truth value is “T” 

If the statement is false, then the truth value is “F” 

Truth Table

A table indicating the truth value of one or more statements is called a truth table.

The truth table of one statement ‘p’ is 

$
\begin{array}{|c|}
\hline p \\
\hline \mathrm{~T} \\
\hline \mathrm{~F} \\
\hline
\end{array}
$

The truth table for two statements ‘p’ and ‘q’ is

$
\begin{array}{|c|c|}
\hline p & q \\
\hline \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~F} \\
\hline
\end{array}
$

In the case of n statements, there are 2n distinct possible arrangements of truth values of statements.

Truth Table for Negation of a Statement 

The truth value of the negation of a statement is always opposite to the truth value of the original statement.

$
\begin{array}{|c|c|}
\hline p & \sim p \\
\hline \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} \\
\hline
\end{array}
$

Truth Table of Conjunction and Disjunction:

$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline p & \sim p & q & \sim q & p \wedge q & \sim p \wedge \sim q & p \vee q & \sim(p \vee q) \\
\hline \mathrm{T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} \\
\hline
\end{array}
$

Negation of a Negation

Negation of negation of a statement is the statement itself.  Equivalently, we write: ~ ( ~ p) = p

Truth Table

$
\begin{array}{|c|c|c|}
\hline p & \sim p & \sim(\sim p) \\
\hline \mathrm{T} & \mathrm{~F} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline
\end{array}
$

Truth Table for Conditional Statement:

A Conditional Statement is false only when p is true and q is false. In all other cases, this is true.

$
\begin{array}{|c|c|c|}
\hline p & q & p \rightarrow q \\
\hline \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~T} \\
\hline
\end{array}
$

Truth Table for Biconditional Statements:

A biconditional statement is true when both p and q are true or when both p and q are false

$
\begin{array}{|c|c|c|}
\hline p & q & p \leftrightarrow q \\
\hline \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~T} \\
\hline
\end{array}
$

Study it with Videos

Truth Table

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top