Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
Truth Table is considered one the most difficult concept.
61 Questions around this concept.
Which of the following is not a disjunction ?
What is negation of x > 5 ?
The contrapositive of the statement ‘If two numbers are not equal, then their squares are not equal’, is :
Latest: Free All-India JEE Main 2026 Mock Test - Attempt Now
JEE Main Sample Papers: Physics | Chemistry | Maths | Top 30 Repeated Questions
JEE Main QP & Mock: Previous 10 Year Questions | Chapter Wise PYQs | Mock test Series
JEE Main: Last Five Year Analysis (2021-2025)
The contrapositive of the statement “I go to school if it does not rain” is :
The negation of the statement “If I become a teacher, then I will open a school” is
Which of the options is a sufficient condition for $p \Leftrightarrow q$ to be true?
What is truth table for $\sim(p \wedge q)$ ?
$
\text { The negation of } \sim s \vee(\sim r \wedge s) \text { is equivalent to: }
$
The proposition ${100} \sim (p\vee \sim q)\vee \sim (p\vee q)$ is logically equivalent to :
Which one of the following Boolean expressions is a tautology?
Truth Value of a Statement
As we know a statement is either true or false. The truth or falsity of a statement is called truth value.
If the statement is true, then the truth value is “T”
If the statement is false, then the truth value is “F”
Truth Table
A table indicating the truth value of one or more statements is called a truth table.
The truth table of one statement ‘p’ is
$
\begin{array}{|c|}
\hline p \\
\hline \mathrm{~T} \\
\hline \mathrm{~F} \\
\hline
\end{array}
$
The truth table for two statements ‘p’ and ‘q’ is
$
\begin{array}{|c|c|}
\hline p & q \\
\hline \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~F} \\
\hline
\end{array}
$
In the case of n statements, there are 2n distinct possible arrangements of truth values of statements.
Truth Table for Negation of a Statement
The truth value of the negation of a statement is always opposite to the truth value of the original statement.
$
\begin{array}{|c|c|}
\hline p & \sim p \\
\hline \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} \\
\hline
\end{array}
$
Truth Table of Conjunction and Disjunction:
$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline p & \sim p & q & \sim q & p \wedge q & \sim p \wedge \sim q & p \vee q & \sim(p \vee q) \\
\hline \mathrm{T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} \\
\hline
\end{array}
$
Negation of a Negation
Negation of negation of a statement is the statement itself. Equivalently, we write: ~ ( ~ p) = p
Truth Table
$
\begin{array}{|c|c|c|}
\hline p & \sim p & \sim(\sim p) \\
\hline \mathrm{T} & \mathrm{~F} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline
\end{array}
$
Truth Table for Conditional Statement:
A Conditional Statement is false only when p is true and q is false. In all other cases, this is true.
$
\begin{array}{|c|c|c|}
\hline p & q & p \rightarrow q \\
\hline \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~T} \\
\hline
\end{array}
$
Truth Table for Biconditional Statements:
A biconditional statement is true when both p and q are true or when both p and q are false
$
\begin{array}{|c|c|c|}
\hline p & q & p \leftrightarrow q \\
\hline \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~T} \\
\hline
\end{array}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
