UPES B.Tech Admissions 2025
Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements
Truth Table is considered one the most difficult concept.
61 Questions around this concept.
Which of the following is not a disjunction ?
What is negation of x > 5 ?
The contrapositive of the statement ‘If two numbers are not equal, then their squares are not equal’, is :
The contrapositive of the statement “I go to school if it does not rain” is :
The negation of the statement “If I become a teacher, then I will open a school” is
Which of the options is a sufficient condition for $p \Leftrightarrow q$ to be true?
What is truth table for $\sim(p \wedge q)$ ?
$
\text { The negation of } \sim s \vee(\sim r \wedge s) \text { is equivalent to: }
$
The proposition ${100} \sim (p\vee \sim q)\vee \sim (p\vee q)$ is logically equivalent to :
Which one of the following Boolean expressions is a tautology?
Truth Value of a Statement
As we know a statement is either true or false. The truth or falsity of a statement is called truth value.
If the statement is true, then the truth value is “T”
If the statement is false, then the truth value is “F”
Truth Table
A table indicating the truth value of one or more statements is called a truth table.
The truth table of one statement ‘p’ is
$
\begin{array}{|c|}
\hline p \\
\hline \mathrm{~T} \\
\hline \mathrm{~F} \\
\hline
\end{array}
$
The truth table for two statements ‘p’ and ‘q’ is
$
\begin{array}{|c|c|}
\hline p & q \\
\hline \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~F} \\
\hline
\end{array}
$
In the case of n statements, there are 2n distinct possible arrangements of truth values of statements.
Truth Table for Negation of a Statement
The truth value of the negation of a statement is always opposite to the truth value of the original statement.
$
\begin{array}{|c|c|}
\hline p & \sim p \\
\hline \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} \\
\hline
\end{array}
$
Truth Table of Conjunction and Disjunction:
$
\begin{array}{|c|c|c|c|c|c|c|c|}
\hline p & \sim p & q & \sim q & p \wedge q & \sim p \wedge \sim q & p \vee q & \sim(p \vee q) \\
\hline \mathrm{T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} \\
\hline
\end{array}
$
Negation of a Negation
Negation of negation of a statement is the statement itself. Equivalently, we write: ~ ( ~ p) = p
Truth Table
$
\begin{array}{|c|c|c|}
\hline p & \sim p & \sim(\sim p) \\
\hline \mathrm{T} & \mathrm{~F} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline
\end{array}
$
Truth Table for Conditional Statement:
A Conditional Statement is false only when p is true and q is false. In all other cases, this is true.
$
\begin{array}{|c|c|c|}
\hline p & q & p \rightarrow q \\
\hline \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~T} \\
\hline
\end{array}
$
Truth Table for Biconditional Statements:
A biconditional statement is true when both p and q are true or when both p and q are false
$
\begin{array}{|c|c|c|}
\hline p & q & p \leftrightarrow q \\
\hline \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~T} \\
\hline
\end{array}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"