NIT Surathkal JEE Main Cutoff 2025: Check Expected Ranks and Trends for BTech Admission

Relation Between Set Notation and Truth Table - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Relation Between Set Notation and Truth Table is considered one of the most asked concept.

  • 24 Questions around this concept.

Solve by difficulty

What is negation of x > 5 ?

If p and q are both false , then which of the following is false ? 

If $p \rightarrow(p \wedge \sim q)$ is false, then the truth values of p and q are respectively : 

 

Consider the following three statements :
(A) If $3+3=7$ then $4+3=8$.
(B) If $5+3=8$ then earth is flat.
(C) If both $(A)$ and $(B)$ are true then $5+6=17$.

Then, which of the following statements is correct?

The statement $\mathrm{p} \wedge(\sim \mathrm{p} \vee \mathrm{q})$ is equivalent to

Choose the corect option for th following truth table : 

$\begin{array}{|c|c|c|}
\hline r & s & r \wedge s \\
\hline T & T & (\mathrm{I}) \\
\hline T & F & (\mathrm{II}) \\
\hline F & T & (\mathrm{III}) \\
\hline F & F & (\mathrm{IV}) \\
\hline
\end{array}$

Choose the correct option for the following table : 

$\begin{array}{|c|c|c|}
\hline r & s & r v s \\
\hline T & T & \text { (I) } \\
\hline T & F & \text { (II) } \\
\hline F & T & \text { (III) } \\
\hline F & F & \text { (IV) } \\
\hline
\end{array}$

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

ICFAI University Hyderabad B.Tech Admissions 2025

Merit Scholarships | NAAC A+ Accredited | Top Recruiters : E&Y, CYENT, Nvidia, CISCO, Genpact, Amazon & many more

The expression $\sim \left ( \sim p\rightarrow q\right )$ is logically equivalent to : 

$\sim (P \vee q ) =$

JEE Main 2025 College Predictor
Know your college admission chances in NITs, IIITs and CFTIs, many States/ Institutes based on your JEE Main rank by using JEE Main 2025 College Predictor.
Use Now

$p \vee q$  has the truth value F if 

Concepts Covered - 0

Relation Between Set Notation and Truth Table

Sets can be used to identify basic logical structure of statements.

Let us understand with an example of two sets p {1,2} and q {2,3}

\begin{array}{|c|c|c|}\hline\quad p\vee q\quad & \quad p\cup q\quad&\quad 1,2,3\quad \\ \hline p\wedge q& p\cap q&2 \\ \hline p^c& \sim p & 3,4 \\ \hline q^c& \sim q&1,4 \\ \hline\end{array}

Using this relation we get

\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}\hline \text{Element } & \mathrm{\;\;\;\;\;}p\mathrm{\;\;\;\;\;}&\mathrm{\;\;\;}q\mathrm{\;\;\;}&\mathrm{\;\;\;\;\;}\sim p\mathrm{\;\;\;\;\;}&\mathrm{\;\;\;}\sim q\mathrm{\;\;\;} &\mathrm{\;\;\;}p\wedge q\mathrm{\;\;}&\mathrm{\;\;}p\vee q\mathrm{\;\;}&\sim\left (p\wedge q \right )\mathrm{\;\;}&\sim p\wedge\sim q\mathrm{\;\;} \\ \hline \hline 1& \mathrm{T}&\mathrm{F} & \mathrm{F} &\mathrm{T}&\mathrm{F}&\mathrm{T}&\mathrm{T}&\mathrm{F} \\ \hline2& \mathrm{T}&\mathrm{T} & \mathrm{F} &\mathrm{F}&\mathrm{T}&\mathrm{T}&\mathrm{F}&\mathrm{F} \\ \hline 3& \mathrm{F}&\mathrm{T} & \mathrm{T} &\mathrm{F}&\mathrm{F}&\mathrm{F}&\mathrm{T}&\mathrm{F} \\ \hline4& \mathrm{F}&\mathrm{F} & \mathrm{T} &\mathrm{T}&\mathrm{F}&\mathrm{F}&\mathrm{T}&\mathrm{T} \\ \hline\end{array}

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top