NIT Surathkal JEE Main Cutoff 2025: Check Expected Ranks and Trends for BTech Admission

Algebra of Statements - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Algebra of Statements is considered one the most difficult concept.

  • 79 Questions around this concept.

Solve by difficulty

Which statement is most precise about logic?

Which of the following is NOT a type of sentence ? 

Which of the following is NOT assertive statement ? 

Which of the following is not a simple statement?

Which of the following sub statements can form a compound statements ? 

Which of the following statements does not have a conjugative ?  

Which one is NOT an example of an AND conjunction? 

UPES B.Tech Admissions 2025

Ranked #42 among Engineering colleges in India by NIRF | Highest Package 1.3 CR , 100% Placements

ICFAI University Hyderabad B.Tech Admissions 2025

Merit Scholarships | NAAC A+ Accredited | Top Recruiters : E&Y, CYENT, Nvidia, CISCO, Genpact, Amazon & many more

Which of the following is not a disjunction ?

What is negation of x > 5 ?

JEE Main 2025 College Predictor
Know your college admission chances in NITs, IIITs and CFTIs, many States/ Institutes based on your JEE Main rank by using JEE Main 2025 College Predictor.
Use Now

The contrapositive of the statement ‘If two numbers are not equal, then their squares are not equal’, is :

Concepts Covered - 1

Algebra of Statements

Idempotent Law
1. $p \vee p \equiv p$
2. $p \wedge p \equiv p$

$
\begin{array}{|c|c|c|}
\hline p & p \vee p & p \wedge p \\
\hline \hline \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~F} \\
\hline
\end{array}
$

Associative Law
1. $(p \vee q) \vee r \equiv p \vee(q \vee r)$
2. $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$

Distributive Law
1. $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \mid$
2. $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$

Commutative Law
1. $p \vee q \equiv q \vee p$
2. $p \wedge q \equiv q \wedge p$

Identity Law
1. $p \wedge T \equiv p$
2. $p \wedge F \equiv F$
3. $\mathrm{p} \vee T \equiv T$
4. $p \vee F \equiv p$

$
\begin{array}{|c|c|c|c|c|c|c|}
\hline p & T & F & p \wedge T & p \wedge F & p \vee T & p \vee F \\
\hline \hline \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline
\end{array}
$

Complement Law
5. $p \vee \sim p \equiv T$
6. $p \wedge \sim p \equiv F$
7. $\sim(\sim p) \equiv p$
8. $\sim T \equiv F$
9. $\sim \mathrm{F} \equiv \mathrm{T}$

$
\begin{array}{|c|c|c|c|c|c|}
\hline p & \sim p & p \vee \sim p & T & p \wedge \sim p & F \\
\hline \hline \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline
\end{array}
$

De-Morgan's Law
1. $\sim(p \vee q) \equiv \sim p \wedge \sim q$
2. $\sim(p \wedge q) \equiv \sim p \vee \sim q$

Truth table for $\sim(p \vee q)$ and $\sim p \wedge \sim q$

$
\begin{array}{|c|c|c|c|c|c|c|}
\hline p & q & \sim p & \sim q & p \vee q & \sim(p \vee q) & \sim p \wedge \sim q \\
\hline \hline \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline
\end{array}
$

$
\begin{array}{|c|c|c|c|c|c|c|}
\hline p & q & \sim p & \sim q & p \wedge q & \sim(p \wedge q) & \sim p \vee \sim q \\
\hline \hline \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline
\end{array}
$

Study it with Videos

Algebra of Statements

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Algebra of Statements

Mathematics for Joint Entrance Examination JEE (Advanced) : Algebra

Page No. : 10.2

Line : 1

E-books & Sample Papers

Get Answer to all your questions

Back to top