Amity University-Noida B.Tech Admissions 2026
Among top 100 Universities Globally in the Times Higher Education (THE) Interdisciplinary Science Rankings 2026
Algebra of Statements is considered one the most difficult concept.
79 Questions around this concept.
Which statement is most precise about logic?
Which of the following is NOT a type of sentence ?
Which of the following is NOT assertive statement ?
Latest: Free All-India JEE Main 2026 Mock Test - Attempt Now
JEE Main Sample Papers: Physics | Chemistry | Maths | Top 30 Repeated Questions
JEE Main QP & Mock: Previous 10 Year Questions | Chapter Wise PYQs | Mock test Series
JEE Main Most Scoring Concept: January 2025 Session | April 2025 Session | Overall
Which of the following is not a simple statement?
Which of the following sub statements can form a compound statements ?
Which of the following statements does not have a conjugative ?
Which one is NOT an example of an AND conjunction?
Which of the following is not a disjunction ?
What is negation of x > 5 ?
The contrapositive of the statement ‘If two numbers are not equal, then their squares are not equal’, is :
Idempotent Law
1. $p \vee p \equiv p$
2. $p \wedge p \equiv p$
$
\begin{array}{|c|c|c|}
\hline p & p \vee p & p \wedge p \\
\hline \hline \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~F} \\
\hline
\end{array}
$
Associative Law
1. $(p \vee q) \vee r \equiv p \vee(q \vee r)$
2. $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
Distributive Law
1. $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \mid$
2. $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
Commutative Law
1. $p \vee q \equiv q \vee p$
2. $p \wedge q \equiv q \wedge p$
Identity Law
1. $p \wedge T \equiv p$
2. $p \wedge F \equiv F$
3. $\mathrm{p} \vee T \equiv T$
4. $p \vee F \equiv p$
$
\begin{array}{|c|c|c|c|c|c|c|}
\hline p & T & F & p \wedge T & p \wedge F & p \vee T & p \vee F \\
\hline \hline \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline
\end{array}
$
Complement Law
5. $p \vee \sim p \equiv T$
6. $p \wedge \sim p \equiv F$
7. $\sim(\sim p) \equiv p$
8. $\sim T \equiv F$
9. $\sim \mathrm{F} \equiv \mathrm{T}$
$
\begin{array}{|c|c|c|c|c|c|}
\hline p & \sim p & p \vee \sim p & T & p \wedge \sim p & F \\
\hline \hline \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline
\end{array}
$
De-Morgan's Law
1. $\sim(p \vee q) \equiv \sim p \wedge \sim q$
2. $\sim(p \wedge q) \equiv \sim p \vee \sim q$
Truth table for $\sim(p \vee q)$ and $\sim p \wedge \sim q$
$
\begin{array}{|c|c|c|c|c|c|c|}
\hline p & q & \sim p & \sim q & p \vee q & \sim(p \vee q) & \sim p \wedge \sim q \\
\hline \hline \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline
\end{array}
$
$
\begin{array}{|c|c|c|c|c|c|c|}
\hline p & q & \sim p & \sim q & p \wedge q & \sim(p \wedge q) & \sim p \vee \sim q \\
\hline \hline \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline
\end{array}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"
