GNA University B.Tech Admissions 2025
100% Placement Assistance | Avail Merit Scholarships | Highest CTC 43 LPA
Algebra of Statements is considered one the most difficult concept.
79 Questions around this concept.
Which statement is most precise about logic?
Which of the following is NOT a type of sentence ?
Which of the following is NOT assertive statement ?
JEE Main 2025: College Predictor | Marks vs Percentile vs Rank
New: JEE Seat Matrix- IITs, NITs, IIITs and GFTI | NITs Cutoff
Don't Miss: Best Public Engineering Colleges
Which of the following is not a simple statement?
Which of the following sub statements can form a compound statements ?
Which of the following statements does not have a conjugative ?
Which one is NOT an example of an AND conjunction?
Which of the following is not a disjunction ?
What is negation of x > 5 ?
The contrapositive of the statement ‘If two numbers are not equal, then their squares are not equal’, is :
Idempotent Law
1. $p \vee p \equiv p$
2. $p \wedge p \equiv p$
$
\begin{array}{|c|c|c|}
\hline p & p \vee p & p \wedge p \\
\hline \hline \mathrm{~T} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~F} \\
\hline
\end{array}
$
Associative Law
1. $(p \vee q) \vee r \equiv p \vee(q \vee r)$
2. $(p \wedge q) \wedge r \equiv p \wedge(q \wedge r)$
Distributive Law
1. $p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \mid$
2. $p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r)$
Commutative Law
1. $p \vee q \equiv q \vee p$
2. $p \wedge q \equiv q \wedge p$
Identity Law
1. $p \wedge T \equiv p$
2. $p \wedge F \equiv F$
3. $\mathrm{p} \vee T \equiv T$
4. $p \vee F \equiv p$
$
\begin{array}{|c|c|c|c|c|c|c|}
\hline p & T & F & p \wedge T & p \wedge F & p \vee T & p \vee F \\
\hline \hline \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} \\
\hline
\end{array}
$
Complement Law
5. $p \vee \sim p \equiv T$
6. $p \wedge \sim p \equiv F$
7. $\sim(\sim p) \equiv p$
8. $\sim T \equiv F$
9. $\sim \mathrm{F} \equiv \mathrm{T}$
$
\begin{array}{|c|c|c|c|c|c|}
\hline p & \sim p & p \vee \sim p & T & p \wedge \sim p & F \\
\hline \hline \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline
\end{array}
$
De-Morgan's Law
1. $\sim(p \vee q) \equiv \sim p \wedge \sim q$
2. $\sim(p \wedge q) \equiv \sim p \vee \sim q$
Truth table for $\sim(p \vee q)$ and $\sim p \wedge \sim q$
$
\begin{array}{|c|c|c|c|c|c|c|}
\hline p & q & \sim p & \sim q & p \vee q & \sim(p \vee q) & \sim p \wedge \sim q \\
\hline \hline \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline
\end{array}
$
$
\begin{array}{|c|c|c|c|c|c|c|}
\hline p & q & \sim p & \sim q & p \wedge q & \sim(p \wedge q) & \sim p \vee \sim q \\
\hline \hline \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} \\
\hline \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline \mathrm{~F} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} & \mathrm{~F} & \mathrm{~T} & \mathrm{~T} \\
\hline
\end{array}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"