JEE Main Registration 2025 Session 1 (Open) - Link, Last Date, Fees, How to Apply

The Dipole In A Uniform Magnetic Field - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Dipole in a uniform magnetic field is considered one the most difficult concept.

  • 21 Questions around this concept.

Solve by difficulty

A magnetic needle lying parallel to a magnetic field requires W units of work to turn it through 60. The torque needed to maintain the needle in this position will be

Concepts Covered - 1

Dipole in a uniform magnetic field

Net Force-  

As magnetic dipole is analogous to an electric dipole.

So we can use m=q_m  

 when a magnetic dipole is kept in a uniform magnetic field. The net force experienced by the dipole is zero as shown in the below figure.

I.e F_{net}=0

 

Hence magnetic dipole will not make any linear motion.

Torque on dipole-

Net torque about the center of dipole is given as \tau =q_mB(2a)\sin\theta

Using   \vec{M}=q_m2a we get \tau =MB\sin\theta

 So \vec{\tau }=\vec{M}\times \vec{B} 

  • The direction of the torque is normal to the plane containing dipole moment M and magnetic field B and is governed by right-hand screw rule.
  • If Dipole is parallel to B the torque is Zero. I.e  \Theta =0^{\circ}    \tau =0  (This is the position of stable equilibrium of dipole)         
  • Torque is maximum when Dipole is perpendicular to B. I.e  \Theta =\frac{\pi }{2}             \tau =MB= maximum \ \ \ torque

               

Oscillation of dipole -If a dipole experiencing a torque in a magnetic field is allowed to rotate, then it will rotate to align itself to the magnetic field. But when it reaches along the direction of B the torque becomes zero. But due to inertia, it overshoots this equilibrium condition and then starts oscillating about this mean position.

The time period of this oscillation is given as 

T=2\pi \sqrt{\frac{I}{MB}}

where I= moment of inertia of dipole about the axis passing through its center and perpendicular to its length.

  • For two magnets having Magnetic Moments in the same direction (i.e sum position of the magnetic moment)

M_{s}=M_{1}+M_{2}

I_{s}=I_{1}+I_{2}

M_{s} - Net Magnetic Moment

I_{s} - Net Moment of Inertia

So Time period is 

\dpi{100} T=2\pi \sqrt{\frac{I_s}{M_sB}}

Similarly, Frequency is given as

\nu =\frac {I}{T_{s}}=\frac{1}{2\pi}\sqrt \frac{(M_{1}+M_{2})B}{I_{s}}

  • For two magnets having Magnetic Moments in the opposite direction (i.e difference position of the magnetic moment)

 

 

           M_{d}=M_{1}-M_{2}

           I_{d}=I_{1}+I_{2}

So Time period is 

T=2\pi \sqrt{\frac{I_d}{M_dB}}  or T_{d}=2\pi\sqrt \frac{I_{1}+I_{2}}{(M_{1}-M_{2})B}

Similarly, Frequency is given as

\nu_{d}=\frac{1}{T_{d}}=\frac{1}{2\pi}\:\sqrt \frac{(M_{1}-M_{2})B}{I_{1}+I_{2}}

  • The ratio of difference and sum position of the magnetic moment

\frac{T_{s}}{T_{d}}=\sqrt{\frac{M_{1}-M_{2}}{M_{1}+M_{2}}}

\frac{M_{1}}{M_{2}}=\frac{T_{d}^{2}+T_{s}^{2}}{T_{d}^{2}-T_{s}^{2}}=\frac{\nu _{s}^{2}+ \nu _{d}^{2}}{\nu _{s}^{2}-\nu _{d}^{2}}

 

Dipole in Non-Uniform magnetic field- In case the magnetic field is non-uniform, the magnitude of the force on ++q_m \ \ \ and \ \ \ - q_m  will be different. So  F_(net)\neq0  and At the same time due to a couple of forces acting, a torque will also be acting on it.

  

  

Work done in rotation-

 

Then work done by magnetic force for rotating a magnetic dipole through an angle \theta _2  from the equilibrium position of an angle \theta _1 (As shown in the above figure) is given as

  \\ W_{mag}=\int \tau d\theta =\int_{\theta _1}^{\theta _2}\tau d\theta cos(180^0)=-\int_{\theta _1}^{\theta _2}\tau d\theta \\ \Rightarrow W_{mag}=-\int_{\theta _1}^{\theta _2}(M\times B) d\theta=-\int_{\theta _1}^{\theta _2}(MBSin\theta ) d\theta=MB\left ( \cos \Theta _{2} -\cos \Theta _{1}\right )

And So work done by an external force is    W=-W_{mag}=MB\left ( \cos \Theta _{1} -\cos \Theta _{2}\right )

For example

if \Theta _{1}=0^{\circ} \; and\; \Theta _{2}=\Theta            

W=MB \left ( 1-\cos \Theta \right )

        if\; \Theta _{1}= 90^{\circ}\; and \; \Theta _{2}=\Theta

         W=-MB\cos \Theta

Potential Energy of a dipole kept in a magnetic field-

As \Delta U=-W_{mag}=W

So change in Potential Energy of a dipole when it is rotated through an angle \theta _2  from the equilibrium position of an angle \theta _1 is given as  \Delta U=MB\left ( \cos \Theta _{1} -\cos \Theta _{2}\right )

        if\; \Theta _{1}= 90^{\circ}\; and \; \Theta _{2}=\Theta

         \Delta U=U_{\theta _2}-U_{\theta _1}=U_{\theta }-U_{90}=-MB\cos \Theta

Assuming  \Theta _{1}= 90^{\circ} and  U_{90^0}=0

          we can write U=U_{\theta }=-\vec{M}\cdot \vec{B}

Equilibrium of Dipole-

1. Stable Equilibrium-

\dpi{100} \Theta = 0^{\circ}

\tau =0

U_{min} = -MB

 

2. Unstable Equilibrium-

\Theta = 180^{\circ}

\tau = 0

U_{max}= MB

 

3. Not in equilibrium-

\Theta = 90^{\circ}

\tau _{max} = MB

 U=0

 

 

Study it with Videos

Dipole in a uniform magnetic field

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top