Careers360 Logo
JEE Main College Predictor 2024 - Predict Engineering College for BTech Admission

Magnetic Field Due To Circular Current Loop - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Magnetic Field due to circular current loop is considered one of the most asked concept.

  • 78 Questions around this concept.

Solve by difficulty

A current i ampere flows along an infinitely long straight thin walled tube, then the magnetic induction at any point inside the tube is

Two concentric coils each of radius equal to  2\pi cm are placed at right angles to each other. 3 ampere and 4 ampere are the currents flowing in each coil respectively. The magnetic induction in weber/m2  at the center of the coils will be

(\mu_{0} =4\pi \times 10^{-7}\; Wb/A-m)

If in a circular coil A of radiusR, current I is flowing and in another coil B of radius 2R, a current 2I is flowing, then the ratio of the magnetic fields at the centre, B_{A} and B_{B} , produced by them will be

Concepts Covered - 1

Magnetic Field due to circular current loop

Magnetic Field due to circular current loop at its centre: 

Magnetic Field due to circular coil at Centre-

Consider a circular coil of radius a and carrying current  I  in the direction shown in Figure. Suppose the loop lies in the plane of the paper. It is desired to find the magnetic field at the centre  O of the coil. Suppose the entire circular coil is divided into a large number of current elements, each of length dl.

According to Biot-Savart law, the magnetic field  d\vec{B} at the centre  O of the coil due to the current element  I \overrightarrow{dl}  is given by,
\overrightarrow{\mathrm{dB}}=\frac{\mu_{0} \mathrm{I}(\overrightarrow{\mathrm{di}} \times \overrightarrow{\mathrm{r}})}{4 \pi \mathrm{r}^{3}}

where \vec{r} is the position vector of point O from the current element.The magnitude of  \overrightarrow{\mathrm{dB}}  at the centre  O  is


\mathrm{dB}=\frac{\mu_{0} \text { Idlrsin } \theta}{4 \pi \mathrm{r}^{3}}
 \therefore \mathrm{dB}=\frac{\mu_{0} \mathrm{Id} l \sin \theta}{4 \pi \mathrm{r}^{2}}

The direction of  \overrightarrow{\mathrm{dB}}  is perpendicular to the plane of the coil and is directed inwards. Since each current element contributes to the magnetic field in the same direction, the total magnetic field  B  at the centre O  can be found by integrating the above equation around the loop i.e.

\therefore \mathrm{B}=\int \mathrm{dB}=\int \frac{\mu_{0} \mathrm{Id}l \sin \theta }{4 \pi \mathrm{r}^{2}}

For each current element, angle between $\overrightarrow{\mathrm{dI}}$ and $\vec{r}$ is $90^{\circ}$. Also distance of each current element from the center O  is a.

 \therefore B=\frac{\mu_{0} I \sin 90^{\circ}}{4 \pi \mathrm{r}^{2}} \int \mathrm{d} l 

But  \int \mathrm{dl}=2 \pi \mathrm{r}= \text{total length of the coil}

 \begin{aligned} &\therefore B=\frac{\mu_{0} I}{4 \pi \mathrm{r}^{2}} 2 \pi \mathrm{r} \\ &\therefore B=\frac{\mu_{0} I}{2 \mathrm{r}} \end{aligned}

For N turns,

 B_0=B_{Centre}=\frac{\mu_{0}}{4\pi }\frac{2\pi Ni}{r}=\frac{\mu_{0} Ni}{2r}

where N=number of turns, i= current and r=radius of a circular coil.


Magnetic field due to a current-carrying circular arc

Case 1:  Arc subtends angle theta at the centre as shown below then  B_0=\frac{\mu_{0}}{4\pi } \frac{i \theta }{r}



Consider length element dl lying always perpendicular to \vec{r}.

Using the Biot-Savart law, the magnetic field produced at O is:

                                                                                  \begin{aligned} &\overrightarrow{d B}=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{l} \times \vec{r}}{r^{3}} \\ &d B=\frac{\mu_{0}}{4 \pi} \frac{I d l r \sin 90^{\circ}}{r^{3}} =\frac{\mu_{0}}{4 \pi} \frac{ I dl}{r^{2}} \ldots .(1) \end{aligned}


Equation (1) gives the magnitude of the field. The direction of the field is given by the right-hand rule. Thus, the direction of each of the dB is into the plane of the paper. The total field at O is

The angle subtended by element dl is d \theta at pt. O, therefore dl= r d \theta
                                                                       \begin{aligned} &\mathrm{B}=\int \mathrm{dB}=\frac{\mu_{0}}{4 \pi} I \int_{\mathrm{0}}^{\theta} \frac{\mathrm{d} l}{\mathrm{r}^{2}} \\ &B=\frac{\mu_{0}}{4 \pi} I \int_{\mathrm{0}}^{\theta} \frac{\mathrm{rd} \theta}{\mathrm{r}^{2}}=\frac{\mu_{0}}{4 \pi} \frac{\mathrm{I}}{\mathrm{r}} \theta \ldots . .(2) \end{aligned}

where the angle \theta is in radians.

Case 2:  Arc subtends angle (2\pi-\theta) at the centre then B_0=\frac{\mu_{0}}{4\pi }.\frac{(2\pi -\theta)i}{r}

Case 3:The magnetic field of the Semicircular arc at the centre  is B_0= \frac{\mu_{o}}{4\pi} \:\frac{\pi i}{r}= \frac{\mu_{o}i}{4r}

Case 4: Magnetic field due to three-quarter Semicircular Current-Carrying arc at the centre B_0=\frac{\mu_{o}}{4\pi}\:\frac{(2\pi-\frac{\pi}{2})i}{r}


Special cases 

1. If the  Distribution of current across the diameter then B_0=0

2. If Current between any two points on the circumference then B_0=0


3. Concentric co-planar circular loops carrying the same current in the Same Direction-



B_{centre}=\frac{\mu_{o}}{4\pi}\:\left (2\pi i \right ) \left [\frac{1}{r_{1}}+\frac{1}{r_{2}} \right ]

If the direction of currents are the same in concentric circles but have a different number of turns then 

B_{centre}=\frac{\mu_{o}}{4\pi}\:\left (2\pi i \right ) \left [\frac{n_1}{r_{1}}+\frac{n_2}{r_{2}} \right ]



4. Concentric co-planar circular loops carrying the same current in the opposite Direction 


B_{centre}=\frac{\mu_{o}}{4\pi}\:\left (2\pi i \right ) \left [\frac{1}{r_{1}}-\frac{1}{r_{2}} \right ]


If the number of turns is not the same i.e n_1\neq n_2

B_{centre}=\frac{\mu_{o}}{4\pi}\:\left (2\pi i \right ) \left [\frac{n_1}{r_{1}}-\frac{n_2}{r_{2}} \right ]

5.  Concentric loops but their planes are perpendicular to each other 

Then B_{net}=\sqrt{{B_{1}}^2+{B_2}^2}


6. Concentric loops but their planes are at an angle ϴ with each other 

B_{net}=\sqrt{{B_{1}}^2+{B_2}^2+2B_1B_2\cos\theta }









Study it with Videos

Magnetic Field due to circular current loop

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top