UPES B.Tech Admissions 2025
ApplyRanked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Summation by Sigma Operator is considered one the most difficult concept.
16 Questions around this concept.
Let f(x) be a function such that for all if and then the value of n is.
The sum of the first 20 terms of the series 5 + 11 + 19 + 29 + 41 + ….. is:
If . to terms, then is equal to
Also Check: Crack JEE Main 2025 - Join Our Free Crash Course Now!
JEE Main 2025: Sample Papers | Syllabus | Mock Tests | PYQs | Video Lectures
JEE Main 2025: Preparation Guide | High Scoring Topics | Study Plan 100 Days
The value of $\lim _{n \rightarrow \infty} \sum_{k=1}^n \frac{n^3}{\left(n^2+k^2\right)\left(n^2+3 k^2\right)}$ is:
The sum of the series $\frac{1}{1-3 \cdot 1^2+1^4}+\frac{2}{1-3 \cdot 2^2+2^4}+\frac{3}{1-3 \cdot 3^2+3^4}+\ldots$ up to 10 -terms is
Summation by Sigma( $\Sigma$ ) Operator
The summation of each term of a sequence or a series can be represented in a compact form, called summation or sigma notation. This summation is represented by the Greek capital letter, Sigma ( $\Sigma$ ).
For example,
$\mathrm{n}=10$
$\sum_{n=1}^n n$, it means the sum of $n$ terms when $n$ varies from 1 to 10
$
\sum_{n=1}^{n=10} n=1+2+3+4+5+6+7+8+9+10
$
Properties of Sigma Notation
1. $\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}=\mathrm{T}_1+\mathrm{T}_2+\mathrm{T}_3+\ldots \ldots+\mathrm{T}_{\mathrm{n}}$, where, $\mathrm{T}_{\mathrm{r}}$ is the general term of the series.
2. $\sum_{\mathrm{r}=1}^{\mathrm{n}}\left(\mathrm{T}_{\mathrm{r}} \pm \mathrm{T}_{\mathrm{r}}^{\prime}\right)=\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}} \pm \sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}^{\prime}$ (sigma operator is distributive over addition and subtraction)
3. $\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}} \mathrm{T}_{\mathrm{r}}^{\prime} \neq\left(\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}\right)\left(\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}^{\prime}\right)$ (sigma operator is not distributive over multiplication)
4. $\sum_{\mathrm{r}=1}^{\mathrm{n}} \frac{\mathrm{T}_{\mathrm{r}}}{\mathrm{T}_{\mathrm{r}}^{\prime}} \neq \frac{\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}}{\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}^{\prime}}$ (sigma operator is not distributive over division)
5. $\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{a} \mathrm{T}_{\mathrm{r}}=\mathrm{a} \sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}} \quad$ ( a is constant)
6. $\sum_{j=1}^n \sum_{i=1}^n T_i T_j=\left(\sum_{i=1}^n T_i\right)\left(\sum_{j=1}^n T_j\right) \quad$ (here i and j are independent)
"Stay in the loop. Receive exam news, study resources, and expert advice!"