Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024)
Summation by Sigma Operator is considered one the most difficult concept.
20 Questions around this concept.
Let $\mathrm{r}^{\text {th }}$ term of a series be given by $\mathrm{t}_{\mathrm{r}}=\frac{r}{1-3 r^2+r^4}$. Then $\lim _{n \rightarrow \infty} \sum_{r=1}^n t_r$ is
Summation by Sigma( $\Sigma$ ) Operator
The summation of each term of a sequence or a series can be represented in a compact form, called summation or sigma notation. This summation is represented by the Greek capital letter, Sigma ( $\Sigma$ ).
For example,
$\mathrm{n}=10$
$\sum_{n=1}^n n$, it means the sum of $n$ terms when $n$ varies from 1 to 10
$
\sum_{n=1}^{n=10} n=1+2+3+4+5+6+7+8+9+10
$
Properties of Sigma Notation
1. $\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}=\mathrm{T}_1+\mathrm{T}_2+\mathrm{T}_3+\ldots \ldots+\mathrm{T}_{\mathrm{n}}$, where, $\mathrm{T}_{\mathrm{r}}$ is the general term of the series.
2. $\sum_{\mathrm{r}=1}^{\mathrm{n}}\left(\mathrm{T}_{\mathrm{r}} \pm \mathrm{T}_{\mathrm{r}}^{\prime}\right)=\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}} \pm \sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}^{\prime}$ (sigma operator is distributive over addition and subtraction)
3. $\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}} \mathrm{T}_{\mathrm{r}}^{\prime} \neq\left(\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}\right)\left(\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}^{\prime}\right)$ (sigma operator is not distributive over multiplication)
4. $\sum_{\mathrm{r}=1}^{\mathrm{n}} \frac{\mathrm{T}_{\mathrm{r}}}{\mathrm{T}_{\mathrm{r}}^{\prime}} \neq \frac{\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}}{\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}^{\prime}}$ (sigma operator is not distributive over division)
5. $\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{a} \mathrm{T}_{\mathrm{r}}=\mathrm{a} \sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}} \quad$ ( a is constant)
6. $\sum_{j=1}^n \sum_{i=1}^n T_i T_j=\left(\sum_{i=1}^n T_i\right)\left(\sum_{j=1}^n T_j\right) \quad$ (here i and j are independent)
"Stay in the loop. Receive exam news, study resources, and expert advice!"