200 Marks in JEE Mains Percentile 2025 - Expected Percentile and Rank

SUMMATION FORMULA - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Summation by Sigma Operator is considered one the most difficult concept.

  • 16 Questions around this concept.

Solve by difficulty

Let f(x) be a function such that f(x+y)=f(x) \cdot f(y) for all x, y \in N if f(1)=3 and \sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{f}(\mathrm{k})=3279 then the value of n is.

The sum of the first 20 terms of the series 5 + 11 + 19 + 29 + 41 + ….. is:

If  \mathrm{S}_{\mathrm{n}}=4+11+21+34+50+\ldots . to  \mathrm{n} terms, then \frac{1}{60}\left(\mathrm{~S}_{29}-\mathrm{S}_9\right)  is equal to

The value of $\lim _{n \rightarrow \infty} \sum_{k=1}^n \frac{n^3}{\left(n^2+k^2\right)\left(n^2+3 k^2\right)}$ is:

The sum of the series $\frac{1}{1-3 \cdot 1^2+1^4}+\frac{2}{1-3 \cdot 2^2+2^4}+\frac{3}{1-3 \cdot 3^2+3^4}+\ldots$ up to 10 -terms is

Concepts Covered - 1

Summation by Sigma Operator

Summation by Sigma( $\Sigma$ ) Operator
The summation of each term of a sequence or a series can be represented in a compact form, called summation or sigma notation. This summation is represented by the Greek capital letter, Sigma ( $\Sigma$ ).

For example,
$\mathrm{n}=10$
$\sum_{n=1}^n n$, it means the sum of $n$ terms when $n$ varies from 1 to 10

$
\sum_{n=1}^{n=10} n=1+2+3+4+5+6+7+8+9+10
$
Properties of Sigma Notation
1. $\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}=\mathrm{T}_1+\mathrm{T}_2+\mathrm{T}_3+\ldots \ldots+\mathrm{T}_{\mathrm{n}}$, where, $\mathrm{T}_{\mathrm{r}}$ is the general term of the series.
2. $\sum_{\mathrm{r}=1}^{\mathrm{n}}\left(\mathrm{T}_{\mathrm{r}} \pm \mathrm{T}_{\mathrm{r}}^{\prime}\right)=\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}} \pm \sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}^{\prime}$ (sigma operator is distributive over addition and subtraction)
3. $\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}} \mathrm{T}_{\mathrm{r}}^{\prime} \neq\left(\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}\right)\left(\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}^{\prime}\right)$ (sigma operator is not distributive over multiplication)
4. $\sum_{\mathrm{r}=1}^{\mathrm{n}} \frac{\mathrm{T}_{\mathrm{r}}}{\mathrm{T}_{\mathrm{r}}^{\prime}} \neq \frac{\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}}{\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}}^{\prime}}$ (sigma operator is not distributive over division)
5. $\sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{a} \mathrm{T}_{\mathrm{r}}=\mathrm{a} \sum_{\mathrm{r}=1}^{\mathrm{n}} \mathrm{T}_{\mathrm{r}} \quad$ ( a is constant)
6. $\sum_{j=1}^n \sum_{i=1}^n T_i T_j=\left(\sum_{i=1}^n T_i\right)\left(\sum_{j=1}^n T_j\right) \quad$ (here i and j are independent)

Study it with Videos

Summation by Sigma Operator

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Summation by Sigma Operator

Mathematics for Joint Entrance Examination JEE (Advanced) : Algebra

Page No. : 5.24

Line : 25

E-books & Sample Papers

Get Answer to all your questions

Back to top