JEE Main 2025 April 4 Shift 1 Question Paper with Solutions Soon - Download PDF

Sum of an Infinite Arithmetic Geometric Series - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • Sum of an infinite AGP is considered one the most difficult concept.

  • 12 Questions around this concept.

Solve by difficulty

Find the value of $\left(\frac{1}{1!}+\frac{1}{3!}+\frac{1}{5!}+\ldots \infty\right)$

Find the value of $\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+\ldots \ldots \ldots \infty\right)$

Concepts Covered - 1

Sum of an infinite AGP

The sum of an infinite AGP
$S_{\infty}$ denotes the sum of an infinite AGP. This sum is a finite quantity if $-1<r<1$

$
\mathrm{S}_{\infty}=a+(a+d) r+(a+2 d) r^2+(a+3 d) r^3 \ldots \ldots
$
Multiply both sides of eq (i) by 'r'

$
r \mathrm{~S}_{\infty}=a r+(a+d) r^2+(a+2 d) r^3+(a+3 d) r^4 \ldots \ldots
$
Subtract eq (ii) from eq (i)

$
\begin{aligned}
& (1-r) \mathrm{S}_{\infty}=a+\left(d r+d r^2+d r^3+\ldots . \text { upto } \infty\right) \\
& \Rightarrow(1-r) \mathrm{S}_{\infty}=a+\frac{d r}{1-r} \\
& \Rightarrow \mathbf{S}_{\infty}=\frac{\mathbf{a}}{\mathbf{1 - r}}+\frac{\mathbf{d r}}{(\mathbf{1}-\mathbf{r})^2}
\end{aligned}
$

Study it with Videos

Sum of an infinite AGP

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top