UPES B.Tech Admissions 2025
ApplyRanked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Sum of an infinite AGP is considered one the most difficult concept.
4 Questions around this concept.
The sum of an infinite AGP
$S_{\infty}$ denotes the sum of an infinite AGP. This sum is a finite quantity if $-1<r<1$
$
\mathrm{S}_{\infty}=a+(a+d) r+(a+2 d) r^2+(a+3 d) r^3 \ldots \ldots
$
Multiply both sides of eq (i) by 'r'
$
r \mathrm{~S}_{\infty}=a r+(a+d) r^2+(a+2 d) r^3+(a+3 d) r^4 \ldots \ldots
$
Subtract eq (ii) from eq (i)
$
\begin{aligned}
& (1-r) \mathrm{S}_{\infty}=a+\left(d r+d r^2+d r^3+\ldots . \text { upto } \infty\right) \\
& \Rightarrow(1-r) \mathrm{S}_{\infty}=a+\frac{d r}{1-r} \\
& \Rightarrow \mathbf{S}_{\infty}=\frac{\mathbf{a}}{\mathbf{1 - r}}+\frac{\mathbf{d r}}{(\mathbf{1}-\mathbf{r})^2}
\end{aligned}
$
"Stay in the loop. Receive exam news, study resources, and expert advice!"