VIT - VITEEE 2025
National level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!
Properties of the Definite Integral (Part 2) - King's Property is considered one the most difficult concept.
85 Questions around this concept.
What is the value of integral $\int_{-a}^a f(x) d x$ equal to ?
If $\int_{0}^{\frac{\pi}{2}}\frac{d\theta}{9 \sin^{2}\theta + 4 \cos^{2}\theta}= k\pi,\, \, then\, \, the \, \, value \, \, of \, \, k\, \, is$
$\int_{\pi}^{10\pi}\left | sinx \right |dx=$
JEE Main 2025: Admit Card Link | Study Plan | Official Question Paper (Session 1)
JEE Main 2025: Sample Papers | Mock Tests | PYQs | High Scoring Topics | College Predictor
New: Meet Careers360 experts in your city and get guidance on shortlisting colleges
Apply to TOP B.Tech /BE Entrance exams: VITEEE | MET | AEEE | BITSAT
For $x \in \mathbb{R}$, let $f(x)=|\sin x|$ and $g(x)=\int_0^x f(t) d t$. Let $p(x)=g(x)-\frac{2}{\pi} x$ Then
Statement - I: The value of the integral is equal to
Statement - II :
The value of the integral $\int_{-\pi }^{\pi }\frac{\cos ^{2}x}{1+a^{x}}dx,\, \, where\, \, a> 0$ , is
If $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{96 x^2 \cos ^2 x}{\left(1+e^x\right)} d x=\pi\left(\alpha \pi^2+\beta\right), \alpha, \beta \in Z$, then $(\alpha+\beta)^2$ equals :
National level exam conducted by VIT University, Vellore | Ranked #11 by NIRF for Engg. | NAAC A++ Accredited | Last Date to Apply: 31st March | NO Further Extensions!
Ranked #42 among Engineering colleges in India by NIRF | Highest CTC 50 LPA , 100% Placements
Definite integrals have properties that relate to the limits of integration.
Property 1
$
\int_a^a f(x) d x=0
$
If the upper and lower limits of integration are the same, the integral is just a line and contains no area, hence the value is 0
Alternatively
If $\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{F}(\mathrm{x})=\mathrm{f}(\mathrm{x})$, then
$
\begin{aligned}
\int_{\mathrm{a}}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx} & =[\mathrm{F}(\mathrm{x})]_{\mathrm{a}}^{\mathrm{a}} \\
& =\mathrm{F}(\mathrm{a})-\mathrm{F}(\mathrm{a}) \\
& =0
\end{aligned}
$
Property 2
The value of the definite integral of a function over any particular interval depends on the function and the interval but not on the variable of the integration.
$
\int_a^b f(x) d x=\int_a^b f(t) d t=\int_a^b f(y) d y
$
For example,
$
\begin{aligned}
& \int_0^2 \mathrm{x}^2 \mathrm{dx}=\left[\frac{\mathrm{x}^3}{3}\right]_0^2=\frac{2^3}{3}-\frac{0^3}{3}=\frac{2^3}{3} \\
& \int_0^2 \mathrm{t}^2 \mathrm{dt}=\left[\frac{\mathrm{t}^3}{3}\right]_0^2=\frac{2^3}{3}-\frac{0^3}{3}=\frac{2^3}{3} \\
& \int_0^2 \mathrm{y}^2 \mathrm{dy}=\left[\frac{\mathrm{y}^3}{3}\right]_0^2=\frac{2^3}{3}-\frac{0^3}{3}=\frac{2^3}{3}
\end{aligned}
$
Property 3
If the limits of definite integral are interchanged, then its value changes by a minus sign only.
If $\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{F}(\mathrm{x})=\mathrm{f}(\mathrm{x})$, then
$
\begin{aligned}
\int_a^b f(x) d x & =[F(x)]_a^b \\
& =F(b)-F(a)
\end{aligned}
$
and,
$
\begin{aligned}
\int_{\mathrm{b}}^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{d} & =[\mathrm{F}(\mathrm{x})]_{\mathrm{b}}^{\mathrm{a}} \\
& =(\mathrm{F}(\mathrm{a})-\mathrm{F}(\mathrm{~b})) \\
& =-(\mathrm{F}(\mathrm{~b})-\mathrm{F}(\mathrm{a}))
\end{aligned}
$
Hence,
$
\int_a^b f(x) d x=-\int_b^a f(x) d x
$
Property 4 (King's Property)
This is one of the most important properties of definite integration.
$\int_a^b f(x) d x=\int_a^b f(a+b-x) d x$
Proof:
In R.H.S, Put $t=a+b-x$
$\Rightarrow \quad d x=-d t$
Also, when $x=a$, then $t=b$, and when $x=b, t=a$
$
\begin{aligned}
\therefore \quad \text { R.H.S } & =\int_b^a f(t)(-d t) \\
& =-\int_b^a f(t) d t \\
& =-\left(-\int_a^b f(t) d t\right) \\
& =\int_a^b f(t) d t \\
& =\int_a^b f(x) d x \\
& =\text { L.H.S }
\end{aligned}
$
Corollary:
$\int_0^{\mathrm{a}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=\int_0^{\mathrm{a}} \mathrm{f}(\mathrm{a}-\mathrm{x}) \mathrm{dx}$
"Stay in the loop. Receive exam news, study resources, and expert advice!"