How to Avoid Negative Marking in JEE Main 2025 Session 1 Exam - Best Tips

Normal at t1 meets the parabola again at t2 - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 12 Questions around this concept.

Solve by difficulty

If the normal at P to the parabola y2 = 4ax cuts again at Q then the distance between P and Q is?

The normal at the point $\left(b t_1^2, 2 b t_1\right)$ on a parabola meets the parabola again in the point $\left(b t_2^2, 2 b t_2\right)$, then

Concepts Covered - 1

Normal at t1 meets the parabola again at t2

Normal at t1 meets the parabola again at t2

Equation of Normal at $\mathrm{P} \equiv\left(\mathrm{at}_1^2, 2 \mathrm{at}_1\right)$ to the parabola $\mathrm{y}^2=4 \mathrm{ax}$ is

$
\mathrm{y}=-\mathrm{t}_{1 \mathrm{x}}+2 \mathrm{at}_1+\mathrm{at}_1^3
$
It meets the parabola again at $\mathrm{Q} \equiv\left(\mathrm{at}_2^2, 2 \mathrm{at}_2\right)$

$
\therefore 2 \mathrm{at}_2=-\mathrm{at}_1 \mathrm{t}_2^2+2 \mathrm{at}_1+\mathrm{at}_1^3
$
$
\begin{aligned}
& \Rightarrow 2 a\left(t_2-t_1\right)+a t_1\left(t_2^2-t_1^2\right)=0 \\
& \Rightarrow \mathrm{a}\left(\mathrm{t}_2-\mathrm{t}_1\right)\left[2+\mathrm{t}_1\left(\mathrm{t}_2+\mathrm{t}_1\right)\right]=0 \\
& \therefore 2+\mathrm{t}_1\left(\mathrm{t}_1+\mathrm{t}_2\right)=0
\end{aligned}
$
$
\mathrm{t}_2=-\mathrm{t}_1-\frac{2}{\mathrm{t}_1}
$
 

Study it with Videos

Normal at t1 meets the parabola again at t2

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Books

Reference Books

Normal at t1 meets the parabola again at t2

Mathematics for Joint Entrance Examination JEE (Advanced) : Coordinate Geometry

Page No. : 5.27

Line : 61

E-books & Sample Papers

Get Answer to all your questions

Back to top