HBTU Kanpur JEE Mains Cutoff 2025: Expected Ranks and Trends

Moment Of Inertia Of Solid Cone - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Concepts Covered - 1

Moment of inertia of solid cone

Let I=Moment of inertia of a solid cone about an axis through its C.O.M

To calculate I

Consider a solid cone of mass M, base radius R ,  and Height as h 

As shown in figure I is about the x axis and through its C.O.M

 

 

Now take an elemental disc of mass dm at a distance x from top as shown in figure

As The density of the cone is

$
\rho=\frac{M}{V}=\frac{M}{\frac{1}{3} \pi R^2 h}
$


So, $d m=\rho d V=\rho\left(\pi r^2 d x\right)$
Using similar triangle method we have

$
\frac{r}{x}=\frac{R}{h}
$


So, $x=\frac{r h}{R} \Rightarrow d x=\frac{h d r}{R}$
And for an elemental disc moment of inertia about x - axis is given by

$
d I=\frac{1}{2} * d m r^2
$
 

So,

$\begin{aligned} & d I=\frac{1}{2} * d m r^2 \\ & d I=\frac{1}{2} \rho \pi r^2 d x * r^2 \\ & d I=\frac{1}{2} \rho \pi r^2 * r^2 * \frac{h}{R} d r \\ & \int d I=\frac{1}{2} \rho \pi \frac{h}{R} \int r^4 d r \\ & \int d I=\frac{1}{2} * \frac{3 M}{\pi R^2 h} \pi \frac{h}{R} \int_0^R r^4 d r \\ & I=\frac{3}{2} * \frac{M}{R^3} * \frac{R^5}{5} \\ & \mathbf{I}=\frac{\mathbf{3}}{\mathbf{1 0}} * \mathbf{M R}^{\mathbf{2}}\end{aligned}$ 

Study it with Videos

Moment of inertia of solid cone

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top