Amity University Noida B.Tech Admissions 2025
ApplyAmong Top 30 National Universities for Engineering (NIRF 2024) | 30+ Specializations | AI Powered Learning & State-of-the-Art Facilities
9 Questions around this concept.
For a reaction A + B → products, the rate of reaction was doubled when concentration of A was doubled. When concentration of A and B both was doubled, the rate was again doubled, order of reaction with respect to A and B are respectively -
Consider the reaction :
$
\mathrm{C}_{2(a q)}+\mathrm{H}_2 \mathrm{~S}_{(a q)} \longrightarrow \mathrm{S}_{(5)}+2 \mathrm{H}_{(2 q)}^{+}+2 \mathrm{C}_{(2 q)}^{-}
$
The rate of reaction for this reaction is
$
\text { Rate }=K\left[\mathrm{Cl}_2\right]\left[\mathrm{H}_2 \mathrm{~S}\right]
$
Which of these mechanism is/are consistent with this rate equation ?
A $\mathrm{Cl}_2+\mathrm{H}_2 \mathrm{~S} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{Cl}^{+}+\mathrm{HS}^{-}$(slow)
$
\mathrm{Cl}^{+}+\mathrm{HS}^{-} \rightarrow \mathrm{H}^{+}+\mathrm{Cl}^{-}+S(\text { fast })
$
B $H_2 S \Leftrightarrow H^{+}+H S^{-}$(fast equilibrium $)$
$
\mathrm{Cl}_2+\mathrm{HS}^{-} \rightarrow 2 \mathrm{Cl}^{-}+\mathrm{H}^{+}+\mathrm{S}(\text { Slow })
$
It is used when the rate law involves only one concentration term.
$\mathrm{t}_{1 / 2} \propto(\mathrm{a})^{1-\mathrm{n}}$
or $\mathrm{t}_{1 / 2} \propto 1 / \mathrm{a}^{\mathrm{n}-1}$
For two different concentrations, we have:
$\frac{\left(\mathrm{t}^{1 / 2}\right)_1}{\left(\mathrm{t}^{1 / 2}\right)_2}=\left(\frac{\mathrm{a}_2}{\mathrm{a}_1}\right)^{\mathrm{n}-1}$
On taking logarithms on both sides, we get:
$\log _{10} \frac{\left(\mathrm{t}_{1 / 2}\right)_1}{\left(\mathrm{t}_{1 / 2}\right)_2}=(\mathrm{n}-1) \log _{10}\left(\mathrm{a}_2 / \mathrm{a}_1\right)$
Hence,
$\mathrm{n}=1+\frac{\log \left(\mathrm{t}^{1 / 2}\right)_1-\log \left(\mathrm{t}^{1 / 2}\right)_2}{\log \mathrm{a}_2-\log \mathrm{a}_1}$
Here, n is the order of the reaction.
Here graphs are plotted between rate and concentration to find the order of the reaction.
$\left[\right.$ Rate $\left.=\mathrm{k}(\text { concentration })^{\mathrm{n}}\right]$
Plots of Rate vs Concentration
If the data for time(t) and [A] is given then this method is applicable. Thus follows the steps given below to find the order of reaction by using the integrated rate law method.
"Stay in the loop. Receive exam news, study resources, and expert advice!"