How to Avoid Negative Marking in JEE Main 2025 Session 1 Exam - Best Tips

Length of sub-Tangent and Sub-Normal of an Ellipse - Practice Questions & MCQ

Edited By admin | Updated on Sep 18, 2023 18:34 AM | #JEE Main

Quick Facts

  • 2 Questions around this concept.

Solve by difficulty

The length of subtangent and subnormal of the ellipse $3 x^2+4 y^2=12$ at point $(-1,1)$ respectively is

Length of subtangent and subnormal at the point \mathrm{\left(\frac{-5 \sqrt{3}}{2}, 2\right)} of the ellipse \mathrm{\frac{x^2}{25}+\frac{y^2}{16}=1} are.

Concepts Covered - 1

Length of subtangent and subnormal of an ellipse

The tangent and normal of the ellipse at P(x1, y1) meet the X-axis at Q and R respectively.

 

Then, the equation of the tangent at $P\left(x_1, y_1\right)$ to the ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ is

$
\frac{\mathrm{xx}_1}{\mathrm{a}^2}+\frac{\mathrm{yy}_1}{\mathrm{~b}^2}=1
$

$\because Q$ lies on X-axis, then put $\mathrm{y}=0$ in Eq (i), we get

$
\Rightarrow \mathrm{x}=\mathrm{OQ}
$

$\Rightarrow \mathrm{OQ}=\frac{\mathrm{a}^2}{\mathrm{x}_1}$ and $\mathrm{OS}=\mathrm{x}_1$

$
\text { length of subtangent }=S Q=O Q-O S=\frac{a^2}{x_1}-x_1
$
Equation of normal at $\mathrm{P}\left(\mathrm{x}_1, \mathrm{y}_1\right)$ to the ellipse $\frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ is

$
\frac{a^2 x}{x_1}-\frac{b^2 y}{y_1}=a^2-b^2
$

$\because R$ lies on X-axis, then put $\mathrm{y}=0$ in Eq (ii), we get

$
\Rightarrow \mathrm{x}=\mathrm{OR}
$

$\therefore \mathrm{OR}=\mathrm{x}_1-\frac{\mathrm{b}^2}{\mathrm{a}^2} \mathrm{x}_1$

\begin{aligned}
& \therefore \text { Length of Subnormal }=\mathrm{RS}=\mathrm{OS}-\mathrm{OR} \\
& =\mathrm{x}_1-\left(\mathrm{x}_1-\frac{\mathrm{b}^2}{\mathrm{a}^2} \mathrm{x}_1\right) \\
& =\frac{\mathrm{b}^2}{\mathrm{a}^2} \mathrm{x}_1=\left(1-\mathrm{e}^2\right) \mathrm{x}_1
\end{aligned}

Study it with Videos

Length of subtangent and subnormal of an ellipse

"Stay in the loop. Receive exam news, study resources, and expert advice!"

Get Answer to all your questions

Back to top